The Financial Instability Hypothesis: a Stochastic Microfoundation Framework

Carl Chiarella and Corrado Di Guilmi

School of Finance and Economics - University of Technology, Sydney

The Hyman P. Minsky Conference
June 29, 2010 - Levy Economics Institute
To consistently microfound the models by Minsky (1975) and Taylor and O’Connell (1985) in which investments drive instability.
The context

The issue: heterogeneous and interacting agents

 - Different types of economic units with respect to their financial soundness;
 - “Shifts of firms among classes as the economy evolves in historical time underlie much of its cyclical behavior. This detail is rich and illuminating but beyond the reach of mere algebra” [Taylor and O’Connell, 1985].

 ↓

- Two different methods for model solution:
 1. the agent based model with numerical simulation;
 2. the stochastic dynamic aggregation framework [Aoki and Yoshikawa, 2006].

- Different types of economic units with respect to their financial soundness;
- “Shifts of firms among classes as the economy evolves in historical time underlie much of its cyclical behavior. This detail is rich and illuminating but beyond the reach of mere algebra” [Taylor and O’Connell, 1985].

Two different methods for model solution:

1. the agent based model with numerical simulation;
2. the stochastic dynamic aggregation framework [Aoki and Yoshikawa, 2006].
The context

The issue: heterogeneous and interacting agents

 - Different types of economic units with respect to their financial soundness;
 - “Shifts of firms among classes as the economy evolves in historical time underlie much of its cyclical behavior. This detail is rich and illuminating but beyond the reach of mere algebra” [Taylor and O’Connell, 1985].

↓

- Two different methods for model solution:
 1. the **agent based model** with numerical simulation;
 2. the **stochastic dynamic aggregation** framework [Aoki and Yoshikawa, 2006].
The context: heterogeneous and interacting agents

 - Different types of economic units with respect to their financial soundness;
 - "Shifts of firms among classes as the economy evolves in historical time underlie much of its cyclical behavior. This detail is rich and illuminating but beyond the reach of mere algebra" [Taylor and O’Connell, 1985].

↓

- Two different methods for model solution:
 1. the agent based model with numerical simulation;
 2. the stochastic dynamic aggregation framework [Aoki and Yoshikawa, 2006].
The context

The issue: heterogeneous and interacting agents

 - Different types of economic units with respect to their financial soundness;
 - “Shifts of firms among classes as the economy evolves in historical time underlie much of its cyclical behavior. This detail is rich and illuminating but beyond the reach of mere algebra” [Taylor and O’Connell, 1985].

- Two different methods for model solution:
 1. the agent based model with numerical simulation;
 2. the stochastic dynamic aggregation framework [Aoki and Yoshikawa, 2006].
The context: heterogeneous and interacting agents

 - Different types of economic units with respect to their financial soundness;
 - “*Shifts of firms among classes as the economy evolves in historical time underlie much of its cyclical behavior. This detail is rich and illuminating but beyond the reach of mere algebra*” [Taylor and O’Connell, 1985].

- Two different methods for model solution:
 1. the **agent based model** with numerical simulation;
 2. the **stochastic dynamic aggregation framework** [Aoki and Yoshikawa, 2006].
The context

The issue: heterogeneous and interacting agents

 - Different types of economic units with respect to their financial soundness;
 - “*Shifts of firms among classes as the economy evolves in historical time underlie much of its cyclical behavior. This detail is rich and illuminating but beyond the reach of mere algebra*” [Taylor and O’Connell, 1985].

- Two different methods for model solution:
 1. the **agent based model** with numerical simulation;
 2. the **stochastic dynamic aggregation** framework [Aoki and Yoshikawa, 2006].
Outline

1. Introduction
 - The context
2. Agent based model
 - Hypotheses
3. Stochastic dynamics
 - Set up
 - Master equation
4. Simulations
 - Results
5. Concluding remarks
 - Future research
6. Bibliography
"The system is pretty sound. It only collapses every three or four years"
Minsky (1975): firms decide on investment based on the difference between the *shadow-price* of capital P_k and its selling price P_i;

Taylor and O’Connell (1985):

- $P_k = f(\rho)$: ρ is the expected difference of anticipated return to capital with respect to the current level;
- ρ influences the demand for equities.

Our contribution:

- ρ^j is the expected difference of return to capital for the firm j with respect to a common minimum level;
- ρ^j is dependent on the dominant strategy in the financial market.
Microfoundation

- Minsky (1975): firms decide on investment based on the difference between the *shadow-price* of capital P_k and its selling price P_i;
- Taylor and O’Connell (1985):
 - $P_k = f(\rho)$: ρ is the expected difference of anticipated return to capital with respect to the current level;
 - ρ influences the demand for equities.
- Our contribution:
 - ρ^j is the expected difference of return to capital for the firm j with respect to a common minimum level;
 - ρ^j is dependent on the dominant strategy in the financial market.
Minsky (1975): firms decide on investment based on the difference between the shadow-price of capital P_k and its selling price P_i;

Taylor and O’Connell (1985):

- $P_k = f(\rho)$: ρ is the expected difference of anticipated return to capital with respect to the current level;
- ρ influences the demand for equities.

Our contribution:

- ρ^j is the expected difference of return to capital for the firm j with respect to a common minimum level;
- ρ^j is dependent on the dominant strategy in the financial market.
Minsky (1975): firms decide on investment based on the difference between the *shadow-price* of capital P_k and its selling price P_i;

Taylor and O’Connell (1985):
- $P_k = f(\rho)$: ρ is the expected difference of anticipated return to capital with respect to the current level;
- ρ influences the demand for equities.

Our contribution:
- ρ^j is the expected difference of return to capital for the firm j with respect to a common minimum level;
- ρ^j is dependent on the dominant strategy in the financial market.
Hypotheses

Firms

- A firm j decides on investment based on the shadow-price of capital $P^i_k(t)$:

$$I^j(t) = aP^j_k(t)$$ \hfill (1)

where

- the shadow-price of capital is

$$P^j_k(t) = \frac{(r(t) + \rho^j(t))P}{i(t)}$$ \hfill (2)

- ρ^j is the expected difference of return to capital for the firm j with respect to the minimum level r;
- i is the interest rate, P is the final good price and a is a parameter.
A firm j decides on investment based on the shadow-price of capital $P^j_k(t)$:

$$I^j(t) = a P^j_k(t)$$

(1)

where

- the shadow-price of capital is

$$P^j_k(t) = \frac{(r(t) + \rho^j(t))P}{i(t)}$$

(2)

- ρ^j is the expected difference of return to capital for the firm j with respect to the minimum level r;
- i is the interest rate, P is the final good price and a is a parameter.
A firm j decides on investment based on the shadow-price of capital $P_{k}^{j}(t)$:

\[I^{j}(t) = aP_{k}^{j}(t) \]

where

- the shadow-price of capital is

\[P_{k}^{j}(t) = \frac{(r(t) + \rho^{j}(t))P}{i(t)} \]

\(\rho^{j} \) is the expected difference of return to capital for the firm j with respect to the minimum level r;

\(i \) is the interest rate, P is the final good price and a is a parameter.
A firm j decides on investment based on the shadow-price of capital $P^j_k(t)$:

$$I^j(t) = aP^j_k(t)$$

(1)

where

- the shadow-price of capital is

$$P^j_k(t) = \frac{(r(t) + \rho^j(t))P}{i(t)}$$

(2)

- ρ^j is the expected difference of return to capital for the firm j with respect to the minimum level r;
- i is the interest rate, P is the final good price and a is a parameter.
A firm j decides on investment based on the shadow-price of capital $P^j_k(t)$:

$$I^j(t) = aP^j_k(t)$$

(1)

where

- the shadow-price of capital is

$$P^j_k(t) = \frac{(r(t) + \rho^j(t))P}{i(t)}$$

(2)

- ρ^j is the expected difference of return to capital for the firm j with respect to the minimum level r;
- i is the interest rate, P is the final good price and a is a parameter.
Firms prefer to finance their investments:
- first with retained earnings A^j and, then
- with new equities E^j or debt D^j (in a proportion dependent on the level of interest rate)

Firms are classified into two groups according to their level of debt D^j:
- state $z = 1$: **speculative firms**: $D^j(t) > 0$
- state $z = 2$: **hedge firms**: $D^j(t) = 0$

Correspondingly, there are two types of shares in the market, with prices $P_{e,1}$ and $P_{e,2}$.
Firms prefer to finance their investments:
- first with retained earnings \(A^j \) and, then
 - with new equities \(E^j \) or debt \(D^j \) (in a proportion dependent on the level of interest rate)

Firms are classified into two groups according to their level of debt \(D^j \):
- state \(z = 1 \): speculative firms: \(D^j(t) > 0 \)
- state \(z = 2 \): hedge firms: \(D^j(t) = 0 \)

Correspondingly, there are two types of shares in the market, with prices \(P_{e,1} \) and \(P_{e,2} \).
Firms prefer to finance their investments:

- first with retained earnings A^j and, then
- with new equities E^j or debt D^j (in a proportion dependent on the level of interest rate)

Firms are classified into two groups according to their level of debt D^j:

- state $z = 1$: **speculative firms**: $D^j(t) > 0$
- state $z = 2$: **hedge firms**: $D^j(t) = 0$

Correspondingly, there are two types of shares in the market, with prices $P_{e,1}$ and $P_{e,2}$.
Firms prefer to finance their investments:
- first with retained earnings A_j and, then
- with new equities E_j or debt D_j (in a proportion dependent on the level of interest rate)

Firms are classified into two groups according to their level of debt D_j:
- state $z = 1$: **speculative firms**: $D_j(t) > 0$
- state $z = 2$: **hedge firms**: $D_j(t) = 0$

Correspondingly, there are two types of shares in the market, with prices $P_{e,1}$ and $P_{e,2}$.
Firms prefer to finance their investments:
- first with retained earnings A_j and, then
- with new equities E_j or debt D_j (in a proportion dependent on the level of interest rate)

Firms are classified into two groups according to their level of debt D_j:
- state $z = 1$: **speculative firms**: $D_j(t) > 0$
- state $z = 2$: **hedge firms**: $D_j(t) = 0$

Correspondingly, there are two types of shares in the market, with prices $P_{e,1}$ and $P_{e,2}$.
A firm fails if $D^j(t) > cK^j(t)$, with $c > 1$.

The probability of new firm entering the system is directly proportional to the variation in the aggregate output observed in the previous period.
A firm fails if $D^j(t) > cK^j(t)$, with $c > 1$.

The probability of new firm entering the system is directly proportional to the variation in the aggregate output observed in the previous period.
• A firm fails if $D^j(t) > cK^j(t)$, with $c > 1$.

• The probability of new firm entering the system is directly proportional to the variation in the aggregate output observed in the previous period.
Hypotheses

Investors

- Two possible types of investors: *chartists* (proportion n^c) and *fundamentalists* (proportion $1 - n^c$);
- chartists *on average* favour the speculative firms, so a higher proportion of chartists implies a higher ρ for speculative firms;
- the proportion of chartists in the market n^c is randomly drawn in each period from a uniform distribution.
Two possible types of investors: *chartists* (proportion n^c) and *fundamentalists* (proportion $1 - n^c$);

- chartists *on average* favour the speculative firms, so a higher proportion of chartists implies a higher ρ for speculative firms;
- the proportion of chartists in the market n^c is randomly drawn in each period from a uniform distribution.
Investors

- Two possible types of investors: *chartists* (proportion n^c) and *fundamentalists* (proportion $1 - n^c$);
- chartists *on average* favour the speculative firms, so a higher proportion of chartists implies a higher ρ for speculative firms;
- the proportion of chartists in the market n^c is randomly drawn in each period from a uniform distribution.
Investors

- Two possible types of investors: *chartists* (proportion n^c) and *fundamentalists* (proportion $1 - n^c$);
- chartists *on average* favour the speculative firms, so a higher proportion of chartists implies a higher ρ for speculative firms;
- the proportion of chartists in the market n^c is randomly drawn in each period from a uniform distribution.
Wealth allocation

using the means of the \(\rho \)s in each group of firms, prices and allocations of the wealth \(W \) are calculated according to

\[
\begin{align*}
\epsilon_1(i, \rho_1, \rho_2, \psi)W &= P_{e,1}E_1 \\
\epsilon_2(i, \rho_1, \rho_2, \psi)W &= P_{e,2}E_2 \\
\beta(i, \rho_1, \rho_2, \psi)W &= D \\
\psi(i, \rho_1, \rho_2, \psi)W &= M \\
W &= P_{e1}E_1 + P_{e2}E_2 + D + M
\end{align*}
\]

where:

- the parameter \(\psi \) reflects the preference for liquidity and the capacity of the system to generate endogenous money;
- \(i \) is the interest rate, \(M \) the demand for money, \(D \) the debt and \(E_1, E_2 \) are the quantity of shares.
Wealth allocation

- using the means of the ρ's in each group of firms, prices and allocations of the wealth W are calculated according to

\[
\begin{align*}
\epsilon_1(i, \rho_1, \rho_2, \psi)W &= P_{e,1}E_1 \\
\epsilon_2(i, \rho_1, \rho_2, \psi)W &= P_{e,2}E_2 \\
\beta(i, \rho_1, \rho_2, \psi)W &= D \\
\psi(i, \rho_1, \rho_2, \psi)W &= M \\
W &= P_{e1}E_1 + P_{e2}E_2 + D + M
\end{align*}
\]

where:

- the parameter ψ reflects the preference for liquidity and the capacity of the system to generate endogenous money;
- i is the interest rate, M the demand for money, D the debt and E_1, E_2 are the quantity of shares.
Hypotheses

Wealth allocation

- using the means of the ρs in each group of firms, prices and allocations of the wealth W are calculated according to

\[
\begin{align*}
\epsilon_1(i, \rho_1, \rho_2, \psi)W &= P_{e,1}E_1 \\
\epsilon_2(i, \rho_1, \rho_2, \psi)W &= P_{e,2}E_2 \\
\beta(i, \rho_1, \rho_2, \psi)W &= D \\
\Psi(i, \rho_1, \rho_2, \psi)W &= M \\
W &= P_{e1}E_1 + P_{e2}E_2 + D + M
\end{align*}
\]

(3)

where:

- the parameter ψ reflects the preference for liquidity and the capacity of the system to generate endogenous money;
- i is the interest rate, M the demand for money, D the debt and E_1, E_2 are the quantity of shares.
Wealth allocation

Using the means of the \(\rho \)s in each group of firms, prices and allocations of the wealth \(W \) are calculated according to

\[
\begin{align*}
\epsilon_1(i, \rho_1, \rho_2, \psi)W &= P_{e,1}E_1 \\
\epsilon_2(i, \rho_1, \rho_2, \psi)W &= P_{e,2}E_2 \\
\beta(i, \rho_1, \rho_2, \psi)W &= D \\
\Psi(i, \rho_1, \rho_2, \psi)W &= M \\
W &= P_{e1}E_1 + P_{e2}E_2 + D + M
\end{align*}
\]

(3)

where:

- the parameter \(\psi \) reflects the preference for liquidity and the capacity of the system to generate endogenous money;
- \(i \) is the interest rate, \(M \) the demand for money, \(D \) the debt and \(E_1, E_2 \) are the quantity of shares.
Wealth allocation

- using the means of the ρs in each group of firms, prices and allocations of the wealth W are calculated according to

$$
\begin{align*}
\epsilon_1(i, \rho_1, \rho_2, \psi)W &= P_{e,1}E_1 \\
\epsilon_2(i, \rho_1, \rho_2, \psi)W &= P_{e,2}E_2 \\
\beta(i, \rho_1, \rho_2, \psi)W &= D \\
\Psi(i, \rho_1, \rho_2, \psi)W &= M \\
W &= P_{e1}E_1 + P_{e2}E_2 + D + M
\end{align*}
$$

(3)

where:

- the parameter ψ reflects the preference for liquidity and the capacity of the system to generate endogenous money;
- i is the interest rate, M the demand for money, D the debt and E_1, E_2 are the quantity of shares.
The key variable for the allocation of wealth is ρ^j. It influences:

- the level of firms’ **investment** through the shadow price $P_k^j(t) = \frac{(r(t)+\rho^j(t))P_i}{i(t)}$;
- the prices of **shares** $P_{e,1}$ and $P_{e,2}$ in system (3), reflecting the investors’ expectations on the different firms.
The variable ρ

- The key variable for the allocation of wealth is ρ^j. It influences:
 - the level of firms’ investment through the shadow price
 \[P_k^j(t) = \frac{(r(t)+\rho^j(t))P}{i(t)}; \]
 - the prices of shares $P_{e,1}$ and $P_{e,2}$ in system (3), reflecting the investors’ expectations on the different firms.
The variable ρ

- The key variable for the allocation of wealth is ρ^j. It influences:
 - the level of firms’ investment through the shadow price
 \[P^j_k(t) = \frac{(r(t) + \rho^j(t)\rho^i(t))}{i(t)} P^i; \]
 - the prices of shares $P_{e,1}$ and $P_{e,2}$ in system (3), reflecting the investors’ expectations on the different firms.
The key variable for the allocation of wealth is ρ^j. It influences:

- the level of firms’ investment through the shadow price $P_k^j(t) = \frac{(r(t) + \rho^j(t))P_i(t)}{i(t)}$;
- the prices of shares $P_{e,1}$ and $P_{e,2}$ in system (3), reflecting the investors’ expectations on the different firms.
The two dynamics

- Using the mean field approximations ρ_1 and ρ_2 it is possible to replicate the model for a *representative hedge firm* and for a *representative speculative firm*;

- thus the model is able to generate dynamics in two different ways:
 - an agent *based* approach with N different agents;
 - a stochastic *approximation*, with 2 different firms: one “good” and one “stressed”.
The two dynamics

- Using the mean field approximations ρ_1 and ρ_2 it is possible to replicate the model for a *representative hedge firm* and for a *representative speculative firm*;
- thus the model is able to generate dynamics in two different ways:
 - an agent *based* approach with N different agents;
 - a stochastic *approximation*, with 2 different firms: one “good” and one “stressed”.
The two dynamics

- Using the mean field approximations ρ_1 and ρ_2 it is possible to replicate the model for a *representative hedge firm* and for a *representative speculative firm*;
- thus the model is able to generate dynamics in two different ways:
 - an **agent based** approach with N different agents;
 - a **stochastic approximation**, with 2 different firms: one “good” and one “stressed”.
The two dynamics

- Using the mean field approximations ρ_1 and ρ_2 it is possible to replicate the model for a *representative hedge firm* and for a *representative speculative firm*;
- thus the model is able to generate dynamics in two different ways:
 - an **agent based** approach with N different agents;
 - a **stochastic approximation**, with 2 different firms: one “good” and one “stressed”.
Replicating the model for the two representative firms, the stochastic dynamics of the proportion of the two types of firms can be described by a master equation:

$$\frac{dp(N_z, t)}{dt} = \text{influx of probability into state } z - \text{outfluxes of probability from } z$$

Using the asymptotic solution [Di Guilmi, 2008], the dynamics of the economy can be represented by a dynamical system with two ODEs:

- one describes the evolution of the proportion of speculative firms;
- the other quantifies the variation in the stock of capital.
Replicating the model for the two representative firms, the stochastic dynamics of the proportion of the two types of firms can be described by a master equation:

\[
\frac{dp(N_z, t)}{dt} = \text{influx of probability into state } z - \text{outfluxes of probability from } z
\]

Using the asymptotic solution [Di Guilmi, 2008], the dynamics of the economy can be represented by a dynamical system with two ODEs:

- one describes the evolution of the proportion of speculative firms;
- the other quantifies the variation in the stock of capital.
Replicating the model for the two representative firms, the stochastic dynamics of the proportion of the two types of firms can be described by a master equation:

\[
\frac{dp(N_z, t)}{dt} = \text{influx of probability into state } z - \text{outfluxes of probability from } z
\]

Using the asymptotic solution [Di Guilmi, 2008], the dynamics of the economy can be represented by a dynamical system with two ODEs:

- one describes the evolution of the proportion of speculative firms;
- the other quantifies the variation in the stock of capital.
Replicating the model for the two representative firms, the stochastic dynamics of the proportion of the two types of firms can be described by a master equation:

$$\frac{dp(N_z, t)}{dt} = \text{influx of probability into state } z - \text{outfluxes of probability from } z$$

Using the asymptotic solution [Di Guilmi, 2008], the dynamics of the economy can be represented by a dynamical system with two ODEs:

- one describes the evolution of the proportion of speculative firms;
- the other quantifies the variation in the stock of capital.
Figure: Capital (upper panel) and share of speculative firms (lower panel). Agent based model (black continuous line) and stochastic dynamics (red dashed line).
Figure: Debt/capital ratio (left axes) and aggregate capital (right axis). Simulation of the agent based model.
Figure: Aggregate capital, variance of fluctuations, interest rate and wealth for different values of ψ (Monte Carlo agent based simulation).
Figure: Aggregate capital, variance of fluctuations, interest rate and wealth for different values of c.
Figure: Aggregate capital, variance of fluctuations, interest rate and wealth for different values of ϕ.
Future research

- the identification of the conditions under which the system generates speculative bubbles and how they burst;
- the integration with an asset pricing model to study the feedback effects from the financial market;
- the study of the effects of the shifting of debt: introduction of banking and public sector.
Future research

- the identification of the conditions under which the system generates speculative bubbles and how they burst;
- the integration with an asset pricing model to study the feedback effects from the financial market;
- the study of the effects of the shifting of debt: introduction of banking and public sector.
• the identification of the conditions under which the system generates speculative bubbles and how they burst;
• the integration with an asset pricing model to study the feedback effects from the financial market;
• the study of the effects of the shifting of debt: introduction of banking and public sector.
Future research

• the identification of the conditions under which the system generates speculative bubbles and how they burst;
• the integration with an asset pricing model to study the feedback effects from the financial market;
• the study of the effects of the shifting of debt: introduction of banking and public sector.
Aoki, Masanao and Yoshikawa, Hiroshi.
Reconstructing Macroeconomics.

Di Guilmi, Corrado.
The generation of business fluctuations: financial fragility and mean-field interaction.

Minsky, Hyman.
John Maynard Keynes.

Minsky, Hyman.
Inflation, recession and economic policy.

Taylor, Lance and O’Connell, Stephen.
A Minsky Crisis,