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An hypothesis is a logical structure. That 
is, a symbol for which certain rules of 
representation hold. 

Why do I always speak of being compelled by 
a rule: why not of the fact that I can choose 
to follow it? For that is equally important. 

Wittgenstein 

Abstract 

Traditionally, economists have considered that mathematics 

acts as a universal language that lends clarity to theoretical 

statements. This paper proposes that mathematics does not function 

as a mere language. Rather, the advocacy of particular theoretical 

views and the choice of mathematical formalisms go hand-in-hand. 

The paper explores this issue by investigating the role of 

mathematics in developments of the theory of economic growth. 
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I. Introduction 

From the late nineteenth century, mathematics has played a 

vital role in the natural sciences. There has been much borrowing 

of mathematical formulae by different branches of natural science. 

Although many economists have argued otherwise, let us grant that 
. 

economics may have benefitted from such cross-fertilization. The 

question then is, how have economists benefitted? 
\ 

The prevailing view of mathematics amongst economists used to 

be similar to that of logical positivism, the philosophy of science 

of Comte, Mach and the Vienna Circle. The basic idea was that 

mathematics permitted economics to be a logical deductive science 

that yielded conclusions that were empirically testable. 

Mathematics in this schema, as Samuelson (1952), the expositor of 

logical positivism in economics perceived, served as a precise, 

universal language. 

By the 196Os, many philosophers of science agreed that the 

ambitious project of logical positivism was impossible. Not all 

extra-logical terms could be assigned to objects, the meaning of 

extra-logical terms suffered from ambiguity, and observations were 

to some extent theory-bound. Positivism might not offer an 

unreasonable description of Newtonian science in its reduction of 

all motion into the principle of least action expressed by means 

of differential calculus. The reduction of all human action into 

a few mathematical laws to many minds became unthinkable by the 

193os, with the development of particle physics, involving the 
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identification of numerous elementary particles and irreducible 

nuclear forces.' 

Moreover, modern science has seen a veritable revolution in 

the use of mathematics.3 Mathematical theory has not only helped 

solve, but also has generated scientific problems. As Hamilton, 

whose system of equations marked the beginning of modern dynamical 
. 

theory, remarked, "while the science is advancing thus in one 

direction by the improvement of physical views, it may\advance in 

another direction also by the invention of mathematical methodsl' 

(Hamilton, 1934, p.247). Quantum mechanics originally also went 

by the name matrizenmechanik, after Heisenberg in the 1920s elaborated 

the Hamiltonian dynamic equations by means of the calculus of 

noncommutative matrices.4 In the 194Os, Fermi's statistical 

simulations on one of the first computers, housed at Los Alamos, 

led him to invent the Monte Carlo method, which he used to solve 

many problems.5 Mathematics in these cases did not act as a 

language unifying scientific activity. Rather, the construction 

of particular mathematical tools led scientists to model the world 

in specific ways. 

Many of the difficulties faced by natural scientists have been 

mathematical in nature. Catching the sense of modern science, the 

philosopher 

modelU' as 

a 

and historian of science I. Lakatos described "(a) 

set of initial conditions . . . which one 
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knows is bound to be replaced during the further 

development of the programme, and one even knows, more 

or less, how. . . . Indeed, if the positive heuristic is 

clearly spelt out, the difficulties of the programme are 

mathematical rather than empirical. 

(Lakatos, 1978a, p.51). The gain in eliminating mathematical 
, 

impediments was an empirical one. A program with explanatory power 

could (i.) generate novel facts, in the sense of explanations of 

events left unaccounted for by rival theories, (ii.) explain the 

successes of those rival theories and (iii.) empirically confirm 

these explanations. 

This chapter investigates the effects of using mathematics in 

developments of the theory of economic growth. It considers the 

following issues: (1.1 Orthodox growth theorists borrowed 

formalisms from physics to state their theory. To what extent was 

the analogy between economics and physics thought through? Was 

the analogy justified? What effect did the mathematical borrowing 

have on growth economics? (2.) To what extent did the mathematical 

constructs enforce, rather than merely express, particular views 

of economists of the growing economy? (3.) Mathematical modelling 

has an internal logic and imposes certain restrictions on what can 

be said. Have 

conflict with 

consistent? 

growth theorists applied their models in ways that 

their internal logical? Are the growth models 
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This chapter introduces the calculus of nineteenth century 

physics that economists borrowed and analyses the development of 

this calculus in Walrasian growth economics in the postwar period 

(Part 2). Part 3 traces the use of geometry in the development of 

neoclassical growth theory. Part 4 contrasts Kaldor's informal, 

growth theory with the formal, neoclassical model. Part 5 looks 

at new developments in the calculus of Walrasian growth theory, 

which are intended to encompass the neoclassical and the kaldorian 

models. Has this calculus, the chapter asks, merely acted as a 

universal language, translating what economists already have known 

or has it given economists the power to think freshly about 

problems of economic growth? Has the mathematics used in the new 

growth models created a framework that has too narrowly 

circumscribed the issues that economists can treat in dealing with 

growth? 
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II. The Mathematical Problem 

A. Marginalist Economics and the Energy Integrand" 

The mathematics of dynamic optimization used in modern 

economics belongs to the calculus of variations,_ which was 

developed to solve certain problems in mechanics in the eighteenth 

and nineteenth centuries.7 \ 

One of the earliest problems in the calculus of variations was 

that of the brachistochrone, the curve of quickest descent. The 

brachistochrone problem was to determine the curve connecting two 

points along which a body acted on only by gravity would descend 

in the shortest time. (The shortest distance between two points in 

the absence of gravity was of course a straight line. But in the 

presence of gravity, the particle that moves down a straight line 

gathers speed relatively slowly. A nonlinear curve that is steeper 

near the starting point is longer than the straight line, but the 

particle will traverse the greater part of the curve at greater 

speed.) Basically, the problem came down to finding the function 

Xi=fi(t) that gave the integral I, 

(1.) I (Xi, xi; ti) = So' L(Xi, xi; ti)dt, i = 1 . . . n, 

in which xi stood for the position and 2 for the velocity of the 

particle, an extreme value during the time period t,-t,. The 

solution to this problem involved finding a differential equation 

that characterized the desired function x=f(t) and then solving the 
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differential equation. The differential, or Euler-Lagrange 

equation, 

(2.) 61 = aL/aXi - (d/dt)(aL/aXi) = 0, t, I t I t, 

was a second order equation in terms of the position and velocity 

of the particle. It meant that the quickest descent occurred along 

the path of the particle at which the integral I became stationary. 

Along that path, the trade off of the position and the velocity of 

the particle would be optimal. \ 

Lagrange (1732-1815) developed variational calculus as a way 

to treat Newton's second law, which equated the force acting on a 

body to the product of the mass of the body and its acceleration, 

(3a.) F = mX. 

Meanwhile, a new, analytic tradition of mechanics was developing 

that centered on the notion of the energy scalar rather than the 

vector of force. 

The concept of energy crystallized with the calculus of 

Hamilton (1805-1865), as a by-product of his study of the 

variational properties of an optical system. In Hamiltonian 

mechanics, the Lagrange integrand L was defined as (i.) kinetic 

eneruv (T), which was associated with the motion of the particle, 

minus (ii.) potential energy (V), which was the stored energy of 

the particle. Thus, 

(3b.) L(x,, ai; ti) = T - V. 

The change in potential energy in respect to position gave 

(3c. 1 -av/ax = mX, 

or Newton's second law.8 
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Hamilton's mathematics served to clarify the principle of 

energy conservation. This principle stated that 

(i.) total energy (E) was composed of kinetic energy (T) and 

potential energy (V) and (ii.) total energy in a closed system took 

on a constant value, that is, 

(4.) H = St"' (T + V)dt = c. 
. 

The principle of energy conservation was just like bookkeeping. 

There was a total amount of energy. The only visible' ,form was 

kinetic energy, which could be converted into other forms, such as 

heat or gravitational energy. When the conversion was totally 

reversible with no loss (as with the frictionless brachistochrone, 

which involved the conversion of kinetic energy to potential energy 

as the particle moved from the highest to the lowest position), the 

form of energy the kinetic energy was converted into was the 

potential energy function. Energy was a state variable, purely a 

function of the present values of the system, not on how the system 

got into that state. If the system were closed, then the force 

associated with the potential energy was conservative and potential 

energy was entirely recoverable. Since the quantity kinetic energy 

plus potential energy was conserved, Hamilton stated that, 

[i]n this expression [equation 4, above], . . . 

the quantity H is independent of time, and 

does not alter in the passage 

the system from one set 

another" 

of the points of 

of position to 
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(Hamilton, 1834, p.250).' In contrast, nonconservative sytems 

were dissipative and necessarily time-dependent. 

Hamilton wanted to simplify the solution of the problem of the 

determination of motion.10 Instead of the integrating n second 

order equations according to the Euler-Lagrange method, Hamilton 

integrated 2n first order differential equations. _ 

To do this, Hamilton defined the auxiliary variable, momentum, 
\ 

Pi, 

Pa. > pi E aL/axi, 

as the change in the Lagrange function with respect to the velocity 

of the particle. In Newtonian terms, momentum was mass times 

velocity, 

(5b.) p=mx. 

Kinetic energy was the integral of mass times acceleration. Yhus 

thatI' 

(5c.) T=+~&=$px. 

Given this, Hamilton defined his function as 

(6.) H = -L + Cpiai = Cl H = H(Xi, pi; t). 

Because (from 3b) 

Pa.) L=T-V 

and (from 5c) 

(7b.) Cpixi = 2T, L=T-V, 

the Hamiltonian function (equation 6) provided a statement of 

energy conservation, 

(8a.) H = T + V = c.12 
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Given that 

(8b.) L= -H + Cpiai (6 rearranged) 

Hamilton arrived at the two differential equations,13 

(9a.) aH/aXi = -pi, 

and 

(9b.) aH/ap, = xi. 

These two equations showed the interrrelationship between position, 

velocity and momenta. Given that H was a constant, one solved for 

the change in momenta in respect to time, given a change in 

position (equation 9a) and for velocity, given a change in momenta 

(9b). The physical system was stationary when p=O and x=0. These 

two conditions of an extreme path, involving point by point 

minimization, became known Hamilton's canonical equations. 

According to Hamilton, these equations achieved the goal of a 

"general solution of the general problem of dynamicstl (1834, 

p.252). 

The energetics movement swept across the various branches of 

physics. With the introduction of Einstein's theory of relativity 

at the turn of the century, E. B. Wilson (the physical 

mathematician and later Samuelson's mentor), saw that "with the 

very foundation of mechanics sometimes in doubt owing to modern 

ideas . . . the one refuge of many theorists is Hamilton's Principle" 

(1912, p.415). Modified Hamiltonians played a foundational role 

in the development of quantum mechanics (1900-1920) and wave 

mechanics (in the 1920s). Textbooks in physics since have been 

organized around the conservation of energy. The unity of science 
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practice, the Hamiltonian 
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conservation as a universal law. In 

equations were difficult to solve and 

were rarely used in specific problems.14 

In economics, the appeal to the mathematics of energy in 

economics dated back to Jevons (1876) and Walras (1905), who 

elaborated the theory of static maximization in terms of the so- 

called Inlaw of energy". Their favorite analogy count&posed the 

workings of the mechanical lever to economic exchange. This implied 

the mapping, shown in table 1. 

Table 1. 

W/P = AA'/BB' = AC/BC 

U' (C,)/U' (C,) = db/da = b/a, 

W and P are forces; AA', BB', displacements of the lever; AC, BC, 
the arms of the lever. a and b stand for too goods. 

In other words, just as the relation between the two weights on the 

lever (W, P) was inversely proportional to displacements from the 

horizontal (AA', BB'), so the ratio of the marginal utilities (or 

the prices) of two goods was inversely proportional to their rate 

of exchange. But the mechanics of the lever, presented by 

and Walras, 

appeared as 

equilibrium 

energy.15 

rested on the Newton's third law, that forces 

equal and opposite pairs. This law described a 

and had nothing to do with motion or the 

The neoclassical economist I. Fisher (1895/1925) attempted at 

any length to lay out the purported analogy between maximization 

Jevons 

always 

static 

law of 



in economic statics and energy physics. In a somewhat 

fashion, Fisher made total utility to be analogous to total 
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garbled 

energy; 

total energy less total work, to total utility less total 

disutility: and the potential, or total work less total energy, to 

total disutility less total utility. 

The early neoclassical economists 

mathematics of energy conservation in a 

(1928) solved the problem of optimization 

which utility was conserved. This marked 

modern neoclassical growth theory. 

B. Ramsey (1928) 

attempted to apply the 
. 

static context. Ramsey 

in a dynamic context, in 

the beginning of 

Ramsey, a teacher of mathematical logic at Cambridge, was, 

like Keynes, the son of a Cambridge don. A close friend and a 

former pupil of Keynes, Ramsey sympathetically criticized Keynes' 

work on mathematical probability. Keynes, as the editor of The 

Economic Journal, promoted Ramsey's two economics essays, on the 

optimal rate of taxation (1927) and savings (1928). Modern 

economics graduate students (at least at MIT) are familiar with 

variants of these "Ramsey models". 

The Ramsey (1928) essay on the optimal rate of saving 

expressed the Cambridge concern with social welfare. Moreso, as 

Keynes commented, 

(i)t is a remarkable example of how the young 
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can take up the story at the point to which 

the previous generation brought it a little 

out of breath, and then proceed forward . . . 

(Keynes, 1933, pp.336-37). The essay assumed the utility 

maximizing paradigm introduced by Jevons (1871) and Walras (1900). 

Utility as the measure of material welfare was cardinal and 
. 

additive. Capital was a produced good and the labor force, which 

was assumed to be employed fully, was exogenously given. A net 

increase in capital goods (or saving) resulted from abstaining from 

consumption out of current income. In return for abstaining, 

accumulation enhanced the production of future consumer goods. 

Only consumer goods yielded utility, with the real value of each 

good measured by the marginal utility of consumption. Given this 

framework, the question naturally arose about that division of each 

period's income between saving and consumption that maximized 

utility over intervals of time. Ramsey, in contrast to his 

predecessors, thought about this question mathematically. 

The static, marginal utility paradigm assumed a convex 

production function. There was no notion of technical progress, 

so that increases of capital relative to a fixed factor at the 

limit yielded a zero net marginal product, with the result that 

the economy approached a stationary state. The utility function 

was also convex, so, assuming static preferences and a fixed 

population, at the limit marginal utility approached zero, the 

point of saturation. Ramsey, having adopted the principle of 

diminishing returns, modelled the time-path of capital that 
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maximized total utility. 

The problem of maximization in economics originated as an 

analogy to minimization in Newtonian mechanics, which was solved 

by means of differential calculus. The first mathematical 

economist, Cournot, was a mathematician by training. While 

Cournot's economics (1838) presented the rudiments _of a static 

equilibrium theory, it lacked a concept of utility. Later, Jevons 

and Walras, who were utility theorists, were stymmied'in .their 

attempt to elaborate a mathematical economics because they knew 

little calculus. The contributions of economists with formal 

training in advanced calculus like Edgeworth, Marshall, Wicksteed 

or Ramsey greatly advanced the field. 

Just as Jevons and Walras set 

equilibrium as an analogy to Newtonian 

up the problem of a static 

statics, so Ramsey proposed 

a mechanical theory of economic dynamics. In particular, his 

solution to the problem of the optimal path of savings followed 

marginalist principles modelled after Newton's third law -- that 

to every action there is an equal and opposite reaction. 

It was Keynes who explained to Ramsey the rule of optimal 

saving arrived at from marginalist economic reasoning. After all, 

Keynes was by origin a Marshallian familiar with neoclassical 

principles of saving. Meanwhile, Ramsey made savings depend on 

the propensity to save and income, rather than on the rate of 

interest, which followed Keynes' dictates. The main difference 

between them was that Ramsey assumed an equilibrium, with savings 

equal to intended investment. 



16 

Ramsey posed the infinite horizon problem of the maximization 

of social utility subject to contraints as follows: What rate of 

savings, it, would minimize the difference (J) between the level of 

at bliss (B) and the sum of each instant's utility (U(C)), given 

the disutility of labor (V(L))? -- that is, in mathematical terms, 

(10-l 
minJ = SE 

[B - U(C) + V(L) 1 U’ (C)>O, U”(C)<O. 

dK, , 
it 

There was no discount factor, or rate of time preference'qince the 

social planner, who had perfect foresight, equally weighted the 

utility that accrues in successive periods. Bliss B defined the 

upper bound of the integral, so that the integral converged. The 

level of utility was constrained by the scarcity of resources, as 

indicated by the accounting identity, 

(lob.) it = F(K,L) - C, F'>O, F"<O, 

where F was a constant returns to scale production function and the 

initial stock of capital is positive, K(O)>O. 

Ramsey solved the minimization problem by setting the 

derivative of the integrand with respect to the independent 

variable le equal to zero. This yielded what has become known as 

the Keynes-Ramsey rule: 

(lla.) .) U'(C) it= -(B + U(C) - V(L)). 

This meant that, along the optimal path, as the economy neared 

bliss, the marginal utility that resulted indirectly from 

investment in any period (the left-hand side) was just sufficient 

to make up for the difference between bliss and the instantaneous 
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level of utility (the right-hand side). This implied the terminal 

condition of zero marginal utility and/or a zero marginal product 

of capital. In this case, bliss was a stationary state in which 

utility was constant. 

Ramsey also solved the minimization problem (equation 10a) by 

means of the calculus of variations. This yielded the Euler 
. 

differential equation 

(12.) F'(K) U'(C) + U'(C) = 0, 
\ 

which required that the proportional fall in the marginal utility 

of consumption equal1 the marginal utility of the marginal product 

of capital. This equation is the form taught today as the "Keynes- 

Ramsey" rule [Solow [1980]; Blanchard and Fisher (1989)]. 

In Ramsey's time, economics was largely literary in style. 

Many readers 

mathematical 

commented in 

'A 

of The Economic Journal would not have appreciated this 

essay on economic optimization. As Keynes (1930) 

his eulogy of Ramsey, 

Mathematical 

one of the most 

to mathematical 

Theory of Saving' . . . is . . . 

remarkable contributions 

economics ever made, both 

in respect of the intrinsic importance 

and difficulty of its subject . . . The article 

is terribly difficult reading for an economist 

(p.335-36). 

Subsequently Keynes repudiated the formal framework of utility 

maximization in The General Theory. Yet economics, in the decades 
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following Ramsey's essay, became highly mathematical in content. 

In this context, Ramsey's mathematical law was rediscovered. 

Samuelson, praising the precision of mathematics, announced that 

the economy that followed the optimal path would 

Accumulate! Accumulate! Accumulate! 

But not faster than Ramsey's Law . . . 

(n)o loose statement can do justice to 

the Theorem, which says what it says, 
\ 

not more and not less 

(1965, p.494). 

In the new edition of Foundations, Samuelson (1983) even stated 

the Ramsey problem of maximizing utility over infinite time in 

three ways.16 He stated the problem in terms of the integral, 

(13a.) 
K(:y 

J = s; U[F(K)-B]dt, 

without the device of bliss. He stated the Ramsey problem by means 

of the "energy integral," 

(13b.) H = ,,,U[F(K) - a] + U'[F(K) - le]fi = c, c=o. 

This Hamiltonian notation meant that the optimal program makes 

instantaneous utility equal the marginal utility yielded by 

investment. He also specified the Ramsey problem by means of the 

"Hamilton-Pontryagin" function, 

(13c.) H(p,K,p+-) = milx e-%(8,K) + CTpjBj, p=u ’ ce-pt . 
it 

p was the shadow price of investment expressed in terms of marginal 

utility and p was the social rate of discount. This function 
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maximized the present value of utility in the first instant and 

the sum of utilities yielded by investment. 

These Hamiltonian functions implied an analogy between the 

conservation of energy and utility, as shown in Table 2. 

Table 2. 

Classical Mechanics: H(x,p;t) = -L(x,x;t) ’ + cpa = c 

Samuelson (1983): H(K,U’(C);t) = U(K, a;t) + CU'(cjit =.C. 

This formal mapping gave an analogy between momentum, p, and 

marginal utility, U', and the position of a particle, x, and the 

capital stock, K. It meant that utility in economics like energy 

in mechanics is conserved. But in physics, the Hamiltonian played 

an important theoretical role. In economics, the conservation of 

utility has had no theoretical significance. 

The use of analogies was common in the physical sciences. 

Analogies established a formal comparison between two systems, with 

the purpose of suggesting theoretical claims to be tested. Testing 

typically revealed positive, but also negative analogies, which 

inspired further research. In this process, analogies were truly 

theory constitutive. In contrast, in economics, analogies existed 

as formal mappings that merely legitimized existing economic 

constructs. 

The first edition of Foundations (1947), Samuelson left out the 

problem of the optimal path of saving. The first edition 
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concerned the existence and the stability of the static, 

competitive general equilibrium system. The second edition (1983) 

treated the problem of dynamic optimization in terms of the 

formalisms of the physics of energy. What happened between the 

publication of the two editions to explain this change in 

perspective? 
I 

C. Samuelson and Solow: Precursors of the New Growth Theory 

Economists took a long time before focusing on the problem 

of dynamic optimization. They began to come to grips with the 

Walrasian problem of maximization in a static general equilibrium 

system only in the 1930s. Cassel's (1932) Walrasian textbook, the 

influx of former physicists into economics, the promotion of 

mathematical economics at the Cowles Commission, and Hicks's (1939) 

response to the Keynes' general model together triggered a 

concerted research effort. Over the next two decades, neowalrasian 

economists demonstrated the conditions for the existence and the 

stability of the static general equilibrium model.17 

Samuelson had the training and the interests to play a leading 

role in the Walrasian revival. As he said, "1 was lucky to enter 

economics in 1932." In the 193Os, Samuelson formed a "masterI'- 

student relationship with E. B. Wilson, the author of a textbook 

(1912) mathematical physics and became a lldisciplelV of J. W. Gibbs. 

From Wilson, Samuelson gained that faith in the unity of science 

that marked the Walrasian project from the start. As the enlarged 
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edition of Samuelson ‘S Foundations (1983), in a section entitled 

"Newtonian Paradise Regained", narrated, 

the Weak Axiom of Revealed Preference . . . 

follows from the basic logic of maximizing. One 

of the most joyful moments of my life was when 

I was led by listening to E. B. Wilson's exposition 
. 

of Gibbsian thermodynamics to infer an eternal truth 

that was independent of its physics or 'economics 

exemplification. (A student who studied only one 

science would be less likely to recognize what 

belongs to logic rather than to the nature of 

things) 

(pp.xviii-xix). 

From this perspective, Samuelson originally intended 

Foundations to establish the conditions of economic equilibrium as 

those of the extremum problem that arose in classical dynamics and 

Walrasian economics. By defining the problem of production, cost 

and demand as one of maxi(mini)mization, Samuelson intended to 

bring all economic theory under the rubric of a few basic 

principles, just as thermodynamics revolved around just a few laws. 

The focus of the book concerned the formal dependence between 

comparative statics and (short run) dynamics, known as the 

Correspondence Principle. In particular, Samuelson purported that 

the restrictions imposed on the stability conditions given a change 

in the parameters of the system would have implications for the 
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economics like thermodynamics 
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were empirically refutable. Hence, 

would be a mathematical, deductive 

system that was operationally meaningful. 

Foundations gave one of the earlier applications of the 

Lagrange multiplier technique to the case of economic maximization 

subject to constraints. It established conventions_ regarding a 
, 

host of issues, including the properties of stable systems and the 

formal underpinnings of the consumer demand curve. In retrospect, 

one might say that the economics graduate student who, according 

to the minimal requirements, mastered the first four chapters on 

statics and comparative statics in Chiangls six-chapter 

mathematical economics textbook (1984) could understand most of the 

first nine of the eleven chapters of Foundations. 

Yet, Samuelson (1983) saw that 

by the time Foundations celebrated its 

official twentieth birthday, its pages of 

Newtonian calculus were old hat. 

(p.xviii). Samuelson had in mind that Foundations (1947), given its 

focus on statics, contained little by way of 

"the fashionable Hamiltonian formalisms that 

are often used in the physics and mathematical 

literature to describe variational problems@' 

(Samuelson and Solow, 1956, pp.554-555). 

Only the last two chapters of Foundations (1947) addressed the 

problem of the stability of a dynamic system. Samuelson 
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distinguished between two types of dynamic systems, one 

tWhistoricalV1, the other l'causallt, or l@nonhistoricalVR. The 

historical system was nonstationary, nonconservative, and time 

dependent, with the result that motion was nonreversible. A 

nonhistorical system was stationary and conservative. This system 

was a lVcomplete causal system" in the sense that the -knowledge of 
, 

the initial conditions of a system and the time that elansed since 

those conditions was sufficient to determine the position of any 

variable in the system.18 The same initial conditions later in 

time would generate the same evolution of the system, except at 

continually later time period. Economists should think of this 

nonhistorical system as being always in equilibrium, just as 

engineers using variational calculus, 

think of a cannon ball as being in 

equilibrium, not only after it has fallen to 

the ground at rest, but also at every point in 

its flight, when it is on its mean trajectory 

as well as in its precession around this path 

(pp.331-32). In the 195Os, Samuelson and Solow pursued this analogy 

in a model of the trajectory of capital over the infinite horizon 

by applying the formalisms of energy physics.lg 

Samuelson wrote a paper on dynamic optimization with 

heterogeneous capital (1956) and aggregate capital (1960). 

Although Solowts name was not attached to the latter paper, he was 

involved in the whole project of applying variational calculus to 

model capital. Solow, who had recently completed his Ph.D. 
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dissertation at Harvard and joined Samuelson at the MIT, wrote an 

unpublished draft of the 1960 paper. This paper originally was 

intended as a chapter in the Dorfman, Samuelson and Solow textbook, 

Linear Programming (1958). Both this book and the 1960 paper was 

financed by the RAND Corporation, a special group inside the 

Douglas Aircraft Corporation during World War II and a corporation 
. 

since 1947, which gave most of its contracts to air force 

operations analysis.2o In the Cold War period, a sound program of 

economics also was viewed as an important part of the national 

defense. Linear programming, which the Air Force developed during 

the war to analyze its interrelated activities, would extend the 

scope of economic applications. 

The economic research on optimal capital accumulation was 

linked directly to the research interests of the Air Force, though 

the Office of Naval Research sponsored some of the economics 

projects as well. In the early 195Os, the Air Force ran a research 

program on the control 

output of this program 

of the trajectory of air-weapons. The major 

was the RAND publication Dynamic Programming by 

Bellman (1954). The book modified variational calculus 

an optimal policy [that] has the property that 

whatever the initial state and initial 

decision are, the remaining decisions must 

constitute an optimal policy with regard to 

the state resulting from the first decision 

to model 
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[p.83]? This property of the optimal control of an air-missile 

was identical to that of the nonhistorical economic system defined 

by Samuelson in Foundations (1947) and essential to the dynamic 

optimal control model that Samuelson with Solow later initiated. 

Bellman (1954) began his analysis of the optimal policy for 

missiles by presenting 

classical calculus, or 

the problem was to 

the classical brachistochrone problem." In 

the calculus of Lagrange, as he explained, 

determine the entire sequence 'of. moves 

constituting the quickest descent. In contrast, Bellman took a 

"new approach". As he stated, 

(a)n advantage of this new approach lies in 

the fact that very often in the determination 

of optimal policies for multistage processes, 

the determination of the next move in terms of 

the current state of the process is in many 

ways a simpler, more natural and even more 

important piece of information 

for planning purposes (p.248). The new formalism that Bellman 

developed, known as dynamic programming, differed only in detail 

from the classical Hamiltonian method.23 Its early applications 

programmed the multi-stage transition of a missile along a path so 

as to minimize a function of the final state variables (such as the 

maximum payload of the Apollo spaceship).24 Solow and Samuelson 

(1956) followed Bellman's recursive procedure in modelling the path 

of capital. 



Samuelson and Solow relied on a number of other sources on the 

calculus of variations. Samuelson at least was familiar with the 
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second edition of Dynamical Systems (1927) by Birkhoff, the leading 

mathematician at Harvard. They knew parts of Caratheorydory's 

calculus book (1935), either directly or through citations in the 

Bliss Lectures (1946).25 They drew heavily from. Bliss, who 

supervised a series of Ph.D. dissertations (1930-1942) in 

Mathematics at the University of Chicago on problems, in the 

calculus of variations. 

It might seem surprising that Samuelson and Solow, who were 

amongst the architects of the neoclassical synthesis, should 

develop a line of research that assumed the economy to be 

continuously in equilibrium. But scientists typically broach 

questions that interest them within the horizons of a broad 

research program, without initially being concerned about 

consistency. Thus Samuelson explained that the details of the 

economic system that a researcher defined depended on the l'purpose 

at hand1@.2" Both economists thought that if the real economy 

worked ideally, it would exhibit the properties of a general 

equilibrium. Moreover, the question that Samuelson and Solow posed 

about the optimal path of the economy followed an easily 

recognizable line of thought within standard economics. 

Samuelson's (1948) principles textbook, the prototype for the next 

three decades, introduced the instantaneous production-efficiency 

frontier and explained to students that the economy that maximized 



would locate at this frontier. Most of the 

on indicating the conditions that a static 
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principles course went 

economy had to satisfy 

to reach that frontier. Dorfman, Samuelson and Solow (1958) then 

introduced the intertemnoral nroduction-efficiencv frontier, using 

linear programming to show the condition that the efficient economy 

satisfied within an interval of time. BY repeating this 
, 

calculation in respect to successive intervals, in principle, one 

could arrive at the entire path of the efficient ‘economy.27 

Samuelson and Solow (1956) this problem, posed earlier by Ramsey, 

by means of the Hamiltonian calculus. 

Ramsey (1928), Foundations 1947, RAND in the 1950s . . . 

Thereisone more strand in this story, the issue of whether capital 

in the aggregate could be thought of as only one good. The 

technique of linear programming maximized a function of a number 

of variables subject to constraints in the form of inequalities. 

In devising this technique, Dorfman, Samuelson and Solow (1958) 

intended to improve upon the disaggregated Leontief model, with its 

fixed coefficients of production. In an optimization framework, 

they generalized the production function and the cost function to 

the case of many consumer and capital goods. Similarly, Samuelson 

and Solow in their (1956) paper extended the Ramsey model to the 

case of numerous consumer and capital goods. They then 

demonstrated that the necessary condition for optimality over time 

was identical in the cases of one capital good and many capital 

goods. This result appeared to confirm Samuelson's (1947) 
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assertion that V1logicallyl' mathematics would not distinguish 

between the cases of (1) the representative good and agency and 

(2-l numerous goods and agencies.'* 

Whether or not an economy with heterogeneous goods optimized 

over time remained a theoretical issue in the 1950s.2g Samuelson 

and Solow (1956) knew about the criticisms of the aggregate model 

of capital made, more forcefully than Wicksell and Hayek, by 

economists at Cambridge, England.30 In particular, J.‘ Robinson 

(1953-54) argued vituperativelythat it was impossible meaningfully 

to aggregate heterogeneous capital goods, because the value of 

capital varied 

Solow position 

though (i.) 

nevertheless, 

with the rate of interest. It was the Samuelson and 

in 1956 and throughout the capital controversy that 

capital goods were physically heterogeneous; 

(ii.) the model of an efficient dynamic economy 

required perfect knowledge of future rates of interest and 

valuations of capital; so that (iii.) working with the Ramsey model 

of abstract, aggregate capital, calculated in value terms, produced 

basically the same solution as the heterogenous capital model.31 

The Samuelson and Solow essay on a heterogeneous dynamic 

capital model was one of the earlier responses of the economists 

of Cambridge, U.S. during the capital controversy. In addition, 

the essay was intended to revive the Ramsey utility-maximizing 

model. Yet, this paper has remained amongst the least known 

publications of either author. The problem was mainly a matter of 

mathematics. The authors failed to explain the meaning of the 

Hamiltonian formalism, with which few economists at the time were 



29 

familiar. In addition, the notation was often baroque and 

incomprehensible in economic terms. 

The essay began by reviewing Ramsey's original (1928) problem, 

which was restated in the form of the maximization problem, 

(14.) 
maxJ= SE” 

U(F(K) - fi) 
dK, U’>O, U”<O 

it F'>O, F'%O, 

where the utility and production functions both exhibited 

diminishing returns given an increase of the capital stock.. The 

end point a* signified the point of bliss, where the marginal 

product of capital was zero and investment ceased, the case of the 

stationary state. Substituting time t instead of 2 as the 

independent variable in equation 14 and differentiating in respect 

to time yielded the Keynes-Ramsey rule.32 

The authors interpreted instantaneous utility U to denote 

independently additive, or cardinal utility. This left the well 

known difficulties of measurement summarized by Samuelson (1947) 

in his development of the doctrine of revealed preference.33 

Because of these difficulties, Samuelson and Solow would have 

preferred approaching the problem of intertemporal efficiency 

without a complete model that specified preferences. Samuelson's 

(1960) paper on the efficient paths of capital accumulation and 

the Solow growth models avoided this difficulty by ignoring the 



33 



31 

utility integral.34 The 1956 exercise, as a precursor of the later 

neowalrasian dynamic utility maximizing models, was not typical of 

the work of either author. 

The authors restated the utility maximizing problem in terms 
, 

of heterogeneous capital goods (K,, K2). Their problem was to show 

that all paths of capital that satisfied the Euler condition,would 

approach the unique point, bliss (ai*) because any path that 

strayed in another direction could be bettered. They illustrated 

this problem in Figure 1, where the J curves described the 

composition of capital (K1/K2) that maximized utility at each 

state. (Samuelson (1960) found the curve J* to be the "curve of 

'steepest descent' or the brachistochrone.35 The growth of the 

value of capital evaluated at constant market-clearing prices was 

maximized along this curve.) Given the alternative initial 

conditions (b(O),,,,,), each point along the paths from b to a* gave 

that composition of capital required for the subsequent optimal 

provision of consumer goods. At bliss (a*), utility was maximized 

and no change in the composition of capital could increase the 

marginal product of capital in terms of consumption. 

The solution of the optimal path was a difficult problem. The 

authors preferred to use "the fashionable Hamiltonian formalismsI 

to solve it, though these offered no computational advantage.36 

They mapped out the economic formalisms onto the Hamiltonian 

calculus. They defined the Lagrange function L as a constant, 
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L = T-V, 

where T was kinetic energy and V potential energy.37 We know from 

nineteenth century mechanics that kinetic energy was thought of as 

the integral of force, or 

T = +rnCZ?, = spa, 

where m stood for the mass of identical particles, Zi for the 

velocity of the particles * 38 and p for their momentum. Kinetic 

energy was defined as \ 

T = %CCaj, (Ki) Akitj. 

The authors did not define the coefficient a:,, which presumably 

gave the quantity of input j to produce one unit of output k. What 

precisely this had to do with the concept of a physical mass 

remained mysterious. k,itjt which stood for the product of 

investment in two types of capital good, was, in mathematical terms 

the product of two derivatives. The analogy between this and the 

square of the velocity of a particle also was mysterious. We also 

know that classical mechanics defined potential energy in terms of 

position, or the coordinates 

v = V(Xi). 

Samuelson and Solow too defined potential energy in terms of the 

coordinates 

V = V(K,). 

The authors then argued that the economic system that they 

constructed was a conservative one if the variable, K, was not 

independent, but was determined by n-l K variables.3g However, the 
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existence of a conservative system depended on whether the 

Hamiltonian T + V was a constant, not whether there was a general 

equilibrium system in which one variable was redundant. 

Samuelson and Solow next defined ltmomentatl, given the marginal 

rate of substitution between the two capitals, Kj, Kl, 

(15.) ~j = aL/aK'j, 

However, in Hamiltonian 

the Lagrange integrand 

mechanics, momenta was due to the fact that 

differed from place to place as you varied 

the velocity of a particle.40 The Samuelson-Solow notion of 

momenta (pj) did not involve velocity and was not analogous to the 

mechanical concept of momenta. 

The Lagrange integral L, stated in terms terms of the stock 

of heterogenous capitals and the marginal rate of substitution 

between these capitals, was an incredibly cumbersome expression 

with no apparent economic meaning. The Hamiltonian function was 

(16.) H(Ki,Pj) = - L(Ki,Kj') + C~ PjKj'. Since the Hamiltonian 

took on a constant value, the economic system was "truly time- 

free" (Samuelson and Solow, 1956, p.556). 

Hamilton's canonical equations gave Samuelson and Solow 

2(n-1) first order differential equations for 2(n-1) independent 

variables (Kj, pj) that solved the multi-stage decision rules that 

told the system how to invest and consume. One could work via a 

sequence of solutions backwards from bliss or forwards from take- 

off, since the variational system was reversible. The amount of 

information required at each stage-- the quantity of each type of 



34 

capital and the marginal rate of substitution between capital - 

was, in the restrained words of the authors, a lltall order1V.41 

Assuming that the computing capacity existed, the initial solution 

might be carried out by a central planning agency or by, 

a research department, not because its 
. 

computation saves labor, but because its 

information can be conveniently turned over to ' 

the line officials who currently make 

decisions at each given state of the system 

(b(1) ,...,b(n-l),a*) . . . 

(pp.558-559). In retrospect, historians of economics may have been 

prone to classify this paper as a piece of Cold War science 

fiction, written for economists. In fact, as Burmeister and Dobell 

[1971] concluded in their survey of mathematical growth theory, the 

paper turned out to be 

a remarkable anticipation of the maximization 

principle and of a literature to burgeon a 

decade later [.] Samuelson and Solow suggest 

many of the foregoing ideas in their analysis 

of the Ramsey problem with heterogeneous 

capital goods 

[p.404]. 
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III. The Solow Growth Model 

As the Ramsey models that he 

198Os, Solow disavowed the models as 

the dynasty is supposed to 

introduced burgeoned in the 

"far-fetchedI I stating that 

solve an infinite- 
, 

time utility-maximization problem . . . The next 

step is harder to swallow in conjunction with ’ 

the first. For this consumer every firm is 

just a transparent . . . device for carrying out 

intertemporal optimization subject only to 

technological constraints and initial 

endowments. Thus any kind of market failure 

is ruled out from the beginning, by assumption 

(1988, p.310). Solow, as years passed, adopted a different 

philosophy. Any mathematical economic theory was a simplification, 

but he intended his growth theory itself to incorporate "the first 

few doses of realism11.42 The motivation behind Solowls philosophy 

was two-fold. He clearly intended his growth economics to feed 

directly into macroeconomic policy-making. Connected with this, 

he believed that the bare tenets of orthodox theory were true and 

to be defended. Thus, his work became caught up in the Cambridge 

controversy, which boiled down to a dispute over the realism of the 

marginal productivity theory of income distribution. Given the 

mathematical problems of incorporating realistic features into a 

general equilibrium model, Solow's models characteristically were 
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incomplete, appearing as they did in aggregate form and without any 

preference functions. 

Neoclassical growth theory arose in the latter 1950s as a 

challenge to the dominant paradigm proposed by Harrod, who was a 

member of the economics department at Oxford and Britain's most 

prominent Keynesian in the early postwar period. Harrod's model 

purported that the economy even in the long run failed to approach 

a full employment equilibrium path. 
\ 

Harrod, who during a term at Cambridge in the 1920s came under 

Keynes' tutelage, generalized the investment multiplier presented 

in the context of the short run dynamics of The General Theory to the 

case of long run growth in "Towards a Dynamic Economics".43 The 

static investment multiplier was defined as 

(16.) Y/I = l/s, 

where Y stood for output, 

out of income. Dividing 

I investment and s the propensity to save 

the left hand side of this multiplier by 

AY gave the economic growth rate G in terms of the propensity to 

save and a variable capital-output ratio, C, that is, 

(17.) G = s/C, G=AY/Y, C=AK/AY=I/AY, s=S/Y ‘ 

or Harrod's dynamic equation. There were three types of 

rate G. The growth rate of a fully employed economy, 

natural rate of growth G,, was determined by the growth 

labor force and the pace of technological improvement. The 

growth 

or the 

of the 

growth 

rate of an economy in profit-maximizing equilibrium with 

unemployment, the warranted rate of growth G,, was determined by 



entrepreneurs' propensity to save s and the desired capital-output 

ratio C, where capital included inventories. The actual rate of 
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growth G, deviated from G, when investment plans were disappointed 

and the economy was in disequilibrium. Harrod, who adopted the 

arguments of The General Theory, detailed the "centrifugal forces@' 

that, in the presence of economic uncertainties, continually pushed 

capital investment off its long run equilibrium path, so that the 

warranted rate of growth showed no tendency to equal the,natural 

rate.44 Thus the variability in the capital-output ratio was 

insufficient to secure a stable equilibrium with full employment. 

The source of instability did not lie in the production technology, 

but in the economic circumstances that determined the relation 

between the rate of interest and the expected rate of profit on 

capital. 

In one of the more remarkable cases of simultaneous discovery, 

Swan (1956) and Solow (1956) a few months before, assuming the 

standard neoclassical model, showed by means of a phase diagram 

(the sort used in mechanics) that forces caused the system to 

approach a stable long run equilibrium. In contrast to Harrodls 

model, in this model the warranted rate of growth appeared to 

approach the natural rate. 

Solow defined the static, aggregate production function 

(18.) Y=F(K,L,ent), F'>O, F"O, 

where F was Cobb Douglas and n, the constant, exogenous rate of 

growth of the labor force. The assumptions of flexible returns to 



labor, profit maximization and perfect foresight of future 

and interest rates assured that the labor force and the 
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rentals 

capital 

stock were employed fully. 

The assumption that firms maximized profits in the absence of 

risk and uncertainty removed the conditions under which unstable 

growth arose in the Keynesian framework. 

the economy was stable in the long run 

modelling the technique of production. 

The task of-proving that 
. 

became a mere problem of 

As Solow stated,' 

this fundamental opposition of warranted and natural 

rates turns out in the end to flow from the crucial 

assumption that production takes place under conditions 

of fixed proportions. There is no possibility of 

substituting labor for capital in production. 

(p.65). 

Solow differentiated equation 18 with respect to time and 

divided by L,ezt, which yielded the equation 

(19.) k = sf(k,l) - nk. 

k stood for the capital-labor ratio and f for the total product as 

varying amounts of capital were employed with one unit of labor. 

sf meant savings, determined by the constant propensity to save 

outof income. nk gave the level of investment at any capital-labor 

ratio given the constant rate of growth of the labor force. The 

equation said that when savings equalled investment, the capital 

stock expanded at the rate of growth of the labor force. In other 

words, growth was balanced. 



39 



40 

My figure 2 (Solow's figure 1) shows the capital-labor ratio 

adjusting to the equilibrium ratio that was consistent with the 

equality of (i.) savings out of income and (ii.) desired 

investment. The savings curve (sf) sloped downwards because the 

production function exhibited diminishing returns to capital. The 
, 

equilibrium point was a stable one because the investment curve 

(nk) crossed the savings curve from below. 
\ 

Solowts figure exemplified the timeless phase portraits that 

economists borrowed from rational mechanics.45 The approach to the 

equilibrium point would be asymptotic in infinity, with the speed 

of travel toward it directly related 

be travelled. This would be apparent 

terms of a first-order differential 

Phase portraits became an obligatory 

time. 

to the distance remaining to 

were figure 2 transformed in 

equation in the variable a. 

in any dynamics around this 

In Solow's figure, the stable capital-labor ratio (k*) was 

consistent with that ratio of the rate of profit to the real wage 

that secured full employment. When the capital-labor ratio was 

less than the equilibrium level, the ratio of the rate of profit 

to the real wage was relatively high and falling, and conversely, 

when the capital-labor ratio exceeded the equilibrium level. 

The neoclassical geometry parodied the conventional Keynesian 

short run analysis of adjustment to equilibrium in the presence of 

unemployment. In the context of the 45' line diagram, the Keynesian 

multiplier principle defined economic equilibrium in terms of the 
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savings-investment relationship. When the economy was in 

disequilibrium, a higher ratio of the under-utilized capital stock 

to workers occurred when planned investment exceeded savings. A 

relatively low ratio of under-utilized capital to workers occurred 

in the converse case. But the Keynesian analysis made the given 

ratio of the capital stock to labor and the equality of planned 

investment and savings consistent with any level of employment of 

labor and capital. Solow simply mapped the Keynesian‘short run 

diseguilibriummodel of the savings-investment relationship and the 

variations of the capital-worker ratio onto his graph showing the 

adjustment of the capital-labor ratio to the neoclassical long run. 

It is obvious that Figure 2 (Solowts Figure 1) contained an 

error. Treating the diagram like a phase portrait, Solow plotted 

the position of the variable k against its motion, k. However, in 

economic terms, the capital-labor ratio k was constant in 

equilibrium, i.e., k=O. The vertical axis should not have been 

labelled k, but nk (nk=I). The same error appeared on four other 

figures in the 1956 essay. So much for Solow's youth and the 

refereeing of journal articles in those days. The rhetorical power 

of the geometrical style of argument was so great that one major 

mathematical economics textbook copied this figure verbatim. 46 

Solow recognized that the geometrical stability proof rested 

on the specification of a diminishing returns production function. 

As he stated 
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(o)f course the strong stability shown in 

Figure 1 [my Figure 21 is not inevitable. The 

steady adjustment of capital and output to a 

state of balanced growth comes about because 

of the way I have drawn the productivity curve 

f(k,l). Many other configurations are a priori 
. 

possible 

(P-73). In the case of a production function with increasing 

returns to scale, the savings curve could lie to the left of the 

investment curve, in the range of practical capital-labor ratios. 

The requirement that the geometrical model produce a long run 

stable solution ruled out a growth theory with 

to scale. 

The constant returns to scale production 

increasing returns 

function could not 

account for the historical rate of growth of productivity. With 

the Cobb Douglas function, increases in productivity depended 

solely on increases in the capital-labor ratio, which historically 

were too small to explain productivity growth. So Solow, like 

Tinbergen (1942), inserted a multiplicative, exponential term into 

the production function, 

(20.) Y = (Loent)aK1-"ert, 

which meant that the level 

O<cY<l. 

of technology varied with time given the 

rate of scientific progress. 

This specification of the source of productivity growth had 

two convenient features. It left the corpus of microeconomic 
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theory intact and provided a tool with which to organize time 

series data as a basis for short run demand management. 

In a perfectly competitive economy, the output elasticities 

Q, l-a! stood for the income shares of labor and capital. Technical 

progress, which made these factors more productive, received no 

reward. The neoclassical model therefore treated technical 

progress as a nonexcludable, public good, as if research and 

development and patents on knowledge did not exist at all. 

Modelling technical progress this way left the marginal 

productivity theory that accounted for pricing and 

distribution entirely intact. Since technical progresss 

arise from a process of learning, the model of the growing 

was path and time independent. 

income 

did not 

economy 

From within the neoclassical framework, the introduction of 

the trend of technology created a modelling difficulty. Since 

technical progress was made a multiplicative factor, algebraically 

it was possible to make progress augment capital or labor or be 

neutral. In the original notation, Solow and Swan made technical 

progress augment capital, which resulted in capital growing faster 

than labor, or unbalanced growth. 

Solowts discussion of this technical problem was replete with 

algebraic errors, which he later corrected.47 Again, for most 

readers, the mathematical details went unnoticed. The credentials 

of the author, the style of writing and the apparent reasonableness 

of the intended meaning together permitted his major point to come 

across. The precise mathematics served as ornamentation. 
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To preserve balanced growth given technical progress, it was 

necessary to make progress labor augmenting. New knowledge 

increased the efficiency of each unit of natural labor by a factor 

of ert and fixed the marginal product of capital at any given 

capital-output ratio. When balanced growth was Cobb-Douglas, 

balanced growth was consistent with neutral or labor augmenting 
. 

technical progress.48 

The whole issue of specifying the constant returns to scale 

production function with technical change concerned mathematical 

notation rather than the real effect of technical progress. So 

Solow (1970) remarked that, 

(i)t should be realized that this reduction of 

technological change to the efficiency-unit 

content . . . of labor is a metaphor. It need 

not refer to any change in the intrinsic 

quality of labor itself...What matters is this 

special property that there should be a way of 

calculating efficiency units of labor dependent 

on the passage of time but not on the stock of 

capital, so that the input-output curve doesn't 

change at all in that system of measurement 

(p.35). Thus, to maintain a model of balanced growth, which ensured 

stable growth -- the purpose of the neoclassical attack on Harrod - 

- Solow and Swan adopted an "anti-accumulation, pro-technologyI' 

line of argument (Swan, 1956, p.338). Changes in the propensity 
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to save (or invest in capital) increased the speed at which the 

economy approached the steady state. In the steady state, the 

propensity to save effected the level of output, but not its rate 

of growth. 

Solow, Samuelson and other neoclassical economists maintained 

that the economy only tended to full employment. Given exogenous 

disturbances to aggregate demand, rigidities in money wages and 

interest rates prevented an immediate return to full employment 

equilibrium. In the short run, the economy moved in a cycle of 

boom and slump. Economic statisticians since the 1930s extracted 

a linear trend from the time series data, which left a data scatter 

with a cyclical shape. Solow (1956) and others lent legitimacy to 

this statistical technique by defining the linear trend in a 

theoretical context. 

In 1961, the Kennedy Council of Economic Advisers adopted the 

neoclassical model as a basis for demand management and policies 

towards growth. Solow, who was a member of the CEA staff, helped 

write the report of the Council.4g The trend of output and 

augmented labor was estimated to be 3 per cent a year. The full 

employment rate of unemployment was put conventionally at 4 per 

cent, on the assumption either than this rate was consistent with 

zero inflation or full capacity utilization. As shown in figure 3, 

the full employment benchmark and the long term rate of growth 
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together gave the trend line 

negative deviations from this 

stationary, cyclical motion. 

The CEA's estimate of the 

mainly on Solow's research. 
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of output. The positive and the 

trend exposed a short run, roughly 

rate of technical progress was based 

Solow (1957) specified the Cobb 
, 

Douglas production function with exogenous technical progress. This 

function 'made changes in labor productivity a function 'of changes 

in the capital-labor ratio (ignoring the issue of balanced growth 

and augmented labor) and the level of technology, given the output 

elasticities of labor and capital. How could one separate out the 

shift in the production function due to technical progress and the 

movements along the production function due to changes in the 

capital-labor ratio? Assuming perfect competition, so that the 

output elasticities were identified with factor income shares, 

Solow put the Cobb Douglas production function in per capita growth 

terms and calculated the rate of technical progress as the 

difference between the growth of labor productivity less the 

product of capital's share of income and the growth of the capital- 

labor ratio. The estimates were done on the time series 1909-1949, 

with the value of capital referring only to capital in use. Given 

the questionable assumption that changes in productivity due to 

cyclical variations averaged out, Solow concluded that knowledge 

increased by 2 per cent a year and 

87 per cent of labor productivity 

to other estimates of the time. 

technical progress accounted for 

growth, a result that fell close 
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Solow, like other mainstream economists at the time, was 

unsatisfied with the artifice of exogenous technical progress. 

Besieged by the criticisms of Joan Robinson and Kaldor about the 

production function, Solow was even more eager to improve the 

growth model, with the proviso that he maintain the marginal 

productivity theory of income distribution. Writing in 1959 on 

fiscal policies to encourage investment, he complained that the 

model made technical change "float down from the outsidel', as if 

"peculiarly disembodied". The time shifts of the production 

function that he estimated in 1957 were 'Ia confession of 

ignorance". The "practical questionI' concerned the effect on of 

increases in the growth of capital on productivity growth.50 

Solow emphasized that the 1957 estimates rested on the 

measurement of capital, a task replete with pitfalls (Solow, 1957). 

He agreed with economists who said that the notion of exogeneous 

technical progress was I1 measure of our ignorancett.51 Denison 

(1962) reduced the residual by making upward adjustments in the 

measurement of inputs in the service sector. Jorgensen and 

Griliches (1967), who also corrected the value of capital services, 

virtually eliminated the residual. 

Solow (1959) sidestepped the problem of explaining the 

residual by embodying exogenous technical progress in capital. He 

specified a Cobb-Douglas production function where technical 

progress augmented capital, defined as the integral of past 

investments. The long run rate of growth of productivity depended 

on the embodiment of knowledge in new capital and thus on the rate 
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of investment. There was an exogenous upper bound to the rate of 

technical progress, which determined the shifts of the production 

function. Investment, however, might be too low because of market 

failure. In this case, government intervention was required to 

increase the rate of technical progress. 

As far as his colleague Samuelson was concerned, these policy- 

oriented models showed Solow to be like a "businessman on holiday", 

all "rough and ready". Samuelson preferred Solow in his habit as 

the l@orthodox priest of the MIT schooltt.52 

In fact, as we shall see below, the Solow model of capital 

augmented technical progress, which made growth depend on the rate 

of saving while maintaining the marginal productivity theory of 

income distribution, was an early precursor of the growth models 

of the new classical economists. These early vintage models have 

been virtually ignored in the orthodox economics literature. On 

the one hand, these capital-augmented models of technical progress 

were inconsistent mathematically with the neoclassical requirement 

of balanced growth. On the other hand, the models were not 

formalized within a dynamic, optimizing, general equilibrium 

system. Because these vintage models at the time did not fit into 

any ongoing, coordinated research program, the models received 

little sponsorship. 
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IV. NeoWalrasian Growth Theory 

A. The Golden Rule 

The 1960s saw the heyday of national economic planning in 

developed and underdeveloped contries. Many economists saw that 
, 

one of the basic problems in economic 

planning, in particular in underdeveloped' 

countries, P-1 concerned with the rate at 

which society should save out of current 

income to achieve maximum growth 

(Uzawa, 1965, p.1). In the context of general equilibrium theory, 

this seemingly mundane assessment rationalized the revival of the 

highly formal, Ramsey model of optimal saving. 

The development of the Ramsey model followed upon the 

introduction of the concept of balanced growth in economics and the 

popularization of variational calculus by physical control theory. 

Economists applied the fashionable Hamiltonian formalisms to model 

unending growth, constrained by the condition that utility per 

worker be conserved. 

The mathematical innovations in capital theory in this period 

were conducted in an environment of metaphor and parody. Orthodox 

theorists referred to the state of balanced growth as the golden 
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Joyously, the Solovians hurried to compute the 

golden-age path, 

the young Phelps enthused (1961, p.643). 

The year 1962-63 was a golden-year for Golden 

Rules at MIT, 

Samuelson gloried (1965, p.487 n.4). General equilibrium theorists 

possessed a concept with which to forge their research in the 

direction of growth. 
\ 

The basic optimal balanced growth model was presented by 

Koopmans (1963). Cass (1963) restated this model using the so- 

called Pontryagin-Hamiltonian formalisms. 

Koopmans was a former physicist who pioneered structural 

econometric modelling and activity analysis. He gave his seminal 

paper on optimal growth during a study week on econometrics and 

development planning. 

In the context of general equilibrium theory, the Koopmans 

seminar paper made two important contributions: (i.) the paper 

showed that the mathematical solution to the Ramsey problem of 

utility maximization was the same for balanced growth as for the 

stationary state with zero growth of the labor force; (ii.) the 

paper introduced shadow prices into the Ramsey model. 

Koopmans stated the Ramsey problem,54 

(21.) •axJ(~) = sz e-‘%(c,)dt, 0 = p - n, p > n. 

This asked for the maximum present value of the instantaneous 

utility of consumption per worker over the infinite horizon. The 
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social rate of time preference was assumed to exceed the rate of 

growth of the labor force to ensure that that the integral 

converged. Koopmans 

with a present value 

(22a.) pt = e-%'(c). 

then defined marginal utility as a commodity, 

of Ptr 

Since the employment of capital made consumption possible, Koopmans 
. 

defined the present value of the marginal product of capital in 

terms of marginal utility. Beforehand, in order that'the model 

yield a solution consistent with the golden rule of growth, he 

defined the variable f(k), which stood for output per worker minus 

the investment 

labor force,55 

(22b.) f(k) 

per worker sufficient to maintain a fully employed 

= f(k) - nk = c + k. 

The price of the marginal product of capital in present value terms 

was 

(22c.) v, = ptf' (k,) . 

Utility was conserved along the unique, optimal path of the 

economy, given the satisfaction of the differential equation, 

(22d.) pt + v, = 0. 

This equation, which was formally analogous to the continuity 

equation in the dynamics of fluids, was equivalent to the Keynes- 
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Ramsey rule.56 Expanding equation 22d, given the definitions of 

p and v, yielded, 

(22e.) u’ (c,) (f' (k,)-p) + u"(ct)C= 0, tzo. 

This meant that along the optimal path (i.) the proportionate fall 

in the marginal utility of consumption equals the excess of the 

marginal product of capital (f'k) over the rate of time preference; 

the marginal product of capital equalled the social rate of 

discount plus the rate of growth of the labor force.57 Koopmans 

traced the approach to the golden rule path on the phase diagram 

shown in figure 5. The bold line showed the economy approaching 

this path given any initial capital-labor ratio. 

The Koopman model showed how to regulate the rate of economic 

growth so that the economy approached the steady-state which 

maximized consumption per head, on the assumption of a diminishing 

returns technology. The social planner's job was to (i.) find the 

optimal initial level of consumption, given the capital-labor ratio 

and (ii.) in the absence of perfect futures markets, each instant 

to subtract from output that consumption level so that the excess 

of the marginal product of capital over social rate of discount 

completely offset the proportional fall in the marginal utility of 

consumption.58 Then the planner knew the amount to be invested and 

repeated the calculation given the increased capital stock of the 

next instant. 
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After Koopmans gave the seminar paper, the members of the 

seminar, including Dorfman, Malinvaud, Morishima and Pasinetti, 

commented critically on a number of technical points. Nobody 

stepped outside the confines of the optimizing model that generated 

a smooth, steady trajectory of capital. The evidence that severe 

instability was a rare phenomenon and economies (at least the 

developed economies) experienced long run growth, supported this 

assumption.5g The acceptance of the capital theoretic, model 

carried unfortunate consequences for the future of economics. 

Growth and development subsequently became two distinct subfields. 

Growth economics offered little analytic basis for planning. No 

planner would have the information to maximize the social utility 

function. The dynamics of the optimizing model were deterministic, 

so that the optimal trajectory ran toward the future or the past. 

The optimal, steady-state path of the economy was represented by 

a geometric point in Euclidean space which represented a series of 

static equilibrium, indexed by time. Economic development, however, 

was a path and time-dependent process. 

B. Economics and the Pontryagin Hamiltonian 

The Hamiltonian formalisms offered an obvious way to formalize 

a dynamic optimizing model like Koopmans. 

Economists who work with dynamic optimization techniques know 

that Pontryagin brought Hamiltonian calculus to the attention of 
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(23.1 J = .f::f(X, W; t) dt 

was minimized. w stood for control variables -- fuel, temperature, 

voltage, etc. -- and was subject to constraints on its range. The 

controller chose w for each t so that when the position of the 

state variable x(t) was determined from 

a = h(x, w; t) 

and the initial condition x(0) was given, the functional J was at 

a minimum. 
\ 

Pontryagin and his colleagues defined the Hamiltonian, 

(24.) H(C', x, w; t) = Q,(x, w; t) + C;=' QVfV(x, w; t), 

where a0 was a constant. Equation 24 mimicked the Hamiltonian 

structure since the multiplier @‘,was defined as aL/ax.63 It meant 

that, given the initial optimal position of the state variable 

x(O), the controller would choose w to maximize H. The relation 

between the initial state (0) and the subsequent state was given 

by the t8solutiont1 9,. The equations of motion took the standard 

Hamiltonian form, 

(25a.) xi = dH/aQi, i = 0 . . . n, 

and 

(25b.) rPi = -aH/axi. 

The latter equation was modified if the optimal trajectory 

coincided with the boundary of the system. In this case, the 

Hamiltonian function took on a value of zero and the system was a 

conservative one. Finally, the t8maximum principle" stated that 

(26.) H(Q, x, w) = M(@, x), 
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Pontryagin and his colleagues defined the Hamiltonian, 

(24.) H(@, x, w; t) = aO(x, w; t) + C;=:=l QE, f"(x, w; t), 

where Q0 was a constant. Equation 24 mimicked the Hamiltonian 

structure since the multiplier QVwas defined as aL/ax."" It meant 

that, given the initial optimal position of the state variable 

X(O)/ the controller would choose w to maximize H. -The relation 

between the initial state (0) and the subsequent state was given 

by the Vtsolution11 qV. The equations of motion took the st,andard 

Hamiltonian form, 

(25a.) xi = aH/a~i, i = 0 . . . n, 

and 

(25b.) 9i = -aH/aXi. 

The latter equation was modified if the optimal trajectory 

coincided with the boundary of the system. In this case, the 

Hamiltonian function took on a value of zero and the system was a 

conservative one. Finally, the Itmaximum principle" stated that 

(26.) H(lk, x, w) = M(lk, x), 

that is, at each instant, given Q and x, M() gave the maximum of 

the values of HO, as a function of the control variable w. This 

principle reduced the optimal control problem to the nineteenth 

century Hamiltonian calculus.64 

Cass (1963/1965), who had just received his Ph.D. from 

Stanford University, and Uzawa (1965) were among the first 

economists to apply the 

In order to characterize 

put it, 

control theory to dynamic optimization.65 

the optimal path of capital, they, as Cass 
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appeal(ed) to the general formulation of the 

classical calculus of variations developed by 

Pontryagin and co-workers, especially theorem 

7, p.69 and the discussions on pp.189-191, 

298-300 

(p.234). Theorem 7 essentially restated the maximum principle. 

Pages 189-191 discussed the theoretical grounds for treating 

optimization during an infinite time horizon like .finite 

optimization. Pages 298-300 stated the modified differential 

equation that an optimal trajectory on the boundary of the region 

must satisfy. 

Samuelson in Foundations (1947) remarked that classical 

calculus could not maximize on the boundary or handle 

discontinuities.66 The mathematical programming developed in the 

1950s remedied the difficulty of dealing with constraints in the 

case of economic statics (the Kuhn-Tucker (1950) theorem dealt with 

nonlinear solution) One of the Ph.D. students under Bliss in the 

1930s dealt with this problem in variational calculus, but the 

papers remained unpublished."7 Thus the issue seemed largely 

unresolved in economic dynamics. This provided the technical 

rationale for the interest of economists in the work of Pontryagin 

et al.68 

Cass defined the problem of the central planning board, to 

find the growth path to maximize the welfare functional 

(27a.) q J(a) = $z u(c(t))emUtdt, u'>O, u"<O, 
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s.t. 

y(t) = f(k(t)), f' (k)>O, f"(k)<O. 

k stood for investment per worker, defined as 

(27b.) k(t) = k(t) + nk(t), 

k(t) = y(t) - c(t), c(t)20, z(t)>O. 

The inequality constraints meant that all of output-could go to 
. 

consumption or investment. k was investment over and above that 

required 

k=nk(t) , 

The 

(28.) 

to maintain the full employment capital-labor ratio: When 

the capital-labor ratio was constant. 

Hamiltonian function was 

H = u(c) + p(f(k)-nk) p=u'(c). 

u(c) stood for instantaneous utility and the constraint, f(k)-nk, 

for net investment per worker. p was defined as the marginal 

utility of a unit of investment (a definition that followed from 

pH/pk = 0). 

Table 3 summarizes the analogies implied by the borrowing of 

control theory of economic growth theory. 
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Table 3 

The Formal Analogies 

Economics Pontryagin et al 

instant. utility u(c) @0(x, w, t) 

constant 1 Q'o 

investment k f”(xW 1 

shadow price P Qk, 

allocation c, k, W 

s per head 

initial state 

constant 

trajectory 

solution ’ 

controls 

However, in contrast to Pontryagin and his associates, the 

economists explicitly did not think out the Hamiltonian in terms 

of its underlying (Lagrangian) structure.6g Yet, the mathematical 

solution to the optimal economic path depended on the underpinnings 

that economists assigned the Hamiltonian. 

Cass interpreted the multiplier p in terms of a shadow price, 

or marginal utility. This interpretation was not entirely new. It 

was conventional to define the Lagrange multiplier in static, 

constrained maximization problems, as a competitive market price 

that reflected marginal utility. Samuelson and Solow commented in 

the 1956 essay that 

(i)t would . . . be possible to give price 

interpretations to the Hamiltonian momenta 
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[Pilt) It 

though they neglected to do so (p.561). 

The definition of the shadow price as the measure of marginal 

utility was crucial to the economic interpretation of the 

Hamiltonian. It meant that, given the initial capital stock and 

price of capital, the level of investment was consistent with the 

equality of the indirect marginal benefit p of an increase in 

investment and the immediate marginal opportunity cost ul‘(c), That 

p=u'(c) determined the position of the system at the next instant, 

and so on, for the whole trajectory.71 This reasoning, of course, 

came down to the Keynes-Ramsey rule based on marginalist reasoning. 

Compared to the days of Walras, by the 196Os, economists were 

better equipped to render marginalist principles in terms of "the 

(classical) law of energy". Just as energy was conserved in 

classical mechanics, so the imputed present value of the net 

national product took on a constant value. Just as the physical 

system chose a path x(t) to minimize the total energy H, 

H= -L + cpa 

of that system, so the economic system would choose that vector of 

investment in 

H = -L + Cpk 

to maximize total utility.72 

Cass introduced the t'canonical equation" that had to be 

satisfied for the path of capital to optimal. Traditionally, the 

continuous imputed price was defined by the change in the 
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Hamiltonian function in respect to investment, 

(29a.) P= - aH/adk, a=o. 

Cass put this in present value terms, 

(29b.) P =- aH/ak (e(-p)t-to}, P = pePt, 

=- ul(c) (f'(k)-n) + pp. 

This differential equation implied that, along the steady state 

optimal path, where the price of capital per worker is constant, 

that is, P = 0, the marginal product of capital equals the social 

time rate of preference plus the rate of growth of the labor force 

(the golden rule).73 (Along the optimal path, the limiting 

present value (t->a) of the capital stock egualled zero, which 

closed the system.) In current value terms, the differential 

equation read, 

(29c.) p = -8H/ak+ pp, 

which was the modified lVcanonical II form that economists would use. 

What did all this have to do with Pontryagin and the maximum 

principle? For the capital theorist of the 196Os, the maximum 

principle meant that 

(i)f the trajectory of an economic system is 

determined by the condition that its Present 

Value attain a maximum, then the decision k 

must be chosen at instant t during the time- 

interval (0,T) so as to maximise the (flow of) 

total imputed value [39] generated by the 

system at that instant 
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(Magill, 1970, p.55). This rendered the maximum principle as 

(i.) a helpful notation and (ii.) a problem of maximizing present 

value. The notation originally was broached in applications of 

variational calculus in economic planning in Europe in the 194Os, 

but was fashionable in the US until the 196Os, when economists 

there lent it a 

that economists 

the Hamiltonian 

marginalist interpretation.74 The main point is 
. 

did not need physical control theory to transform 

from present value to current value. ’ A ,little 

algebraic manipulation, as shown above, would do.75 

The Hamiltonian functions used in economics and the 

engineering were indeed two different functions: The physical 

control problem was defined in terms of three variables, position 

(x) I velocity (a), and the control (w); the economic problem in 

terms of two variables, position (k) and velocity (a), according 

to the classical calculus of variations. 

The technical contribution of Pontryagin and his associates 

in economics concerned the treatment of maximization subject to 

constraints in the form of inequalities. Just as physical controls 

were subject to constraints, so the propensity to save was 

constrained, between the values of zero and one.76 The system 

1tjumpedt8 when the value of the propensity to save changed from a 

limiting to an interior value. To this extent, economists thought 

of control theory as simply a lltKuhn-Tuckert type generalization 

of the traditional canonical form to the case in which the 'static' 

maximum is attained on a boundary rather than at an interior point 

of the output space" (Burmeister and Dobell, 1970, ~.370).~~ But 
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this whole fuss over boundary maxima concerned a mathematical 

nicety. In practice, a country's propensity to save was never zero 

or one. 

American economists in the 1960s were impressed by the recent 

source of variational calculus, prompted, as it was Itby the 

requirements of space technologyI@ (Dorfman, 1969, p.8.17). Before 
. 

a seemingly arcane subject, the calculus of variations in the 1960s 

becmae known as optimal control theory, giving capitaltheory Ita 

new lease on life88.78 

Burmeister and Dobell claimed that t'Academician Pontryagin 

and his colleagues have thus enunciated a newer and more powerful 

principle of an invisible hand: the maximum principle of Pontryagin 

is seen to be the culmination of a logical sequence originating in 

the maximum principle of Adam Smith" (p.404). But the problem of 

Pontryagin et al concerned the use of exooenous controls on a 

system. 

In Walrasian economics, the instantaneous allocation of 

resources to investment and consumption served as an implicit 

instrument of control. Given perfect futures markets, the economic 

system traded off the size of the capital stock with its rate of 

change, which is what makes the stock change in size, so that 

consumption over time is maximized and utility is conserved. 

Economic planners have only to assign the price of investment that 

maximizes the net national product given the initial capital-labor 
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ratio and reassign corrected prices in the event of shocks to the 

system at the unsteady saddlepoint equilibrium, shown in Figure 

6.79 Classical variational calculus, rather than the formalisms 

of control theory, was the appropriate medium (and the form that 

economists actually used) to express this problem. _ 

Textbooks in capital theory still refer to Pdntryagin to 

legitimize the dynamic competitive equilibrium system with perfect 

foresight and continuous asset market clearing. This analogy is 

largely pretense. 

V. An Empirical Growth Theory: Kaldor's Model 

A. Solow vs Kaldor 

Solow, having just won the Nobel Prize for founding modern 

growth theory, remarked at the AEA meetings that growth was about 

once again to become the topic of the day. In the preceding 

fifteen years, productivity growth in most of the OECD countries 

was negligible and many countries, including the US and the UK, saw 

negative growth rates, yet the economies of the "Gang of Fourt' 

experienced double-digit export-led growth rates and Japanese 

exports accounting for a large part of a growing deficit on the US 

balance of trade. Growth ranked high on the agenda of economists 

interested in policy issues. Meanwhile, new classical economists, 



69 

the new creative theorists of economics, reached a stage in the 

course of their research where growth was an obvious research 

problem. We find the new classical economists demanding, using the 

jargon of the 1950's, "What are the engines of growth?" (Rebel0 

(1987), p.2). In the growth models presented by new classical 

economists, the economy, which is peopled by agents who have 

perfect foresight and maximize utility, follows an optimal path, 

along the lines set out by Cass (1963). 
\ 

At the same time, these new growth models are intended to 

explain the stylized facts of growth, which were established by 

Kaldor in the 1950s. As the new classical economist Romer 

explained, "the basic questions about growth are being reexamined - 

- it may be useful to review . . . Kaldorls list of facts" (1989, 

p.54). 

Kaldor, a well known economist at Cambridge, England in the 

195os, insisted that economists start with a ~~lstylizedl -- i.e. 

non-rigorous but suggestive -- description of a modern economyI' 

(Samuelson, 1963, p. 197). His stylized facts of growth included 

the existence of: 

(1.) continued growth of labor productivity, with no 

tendency for a falling rate of productivity growth; 

(2.) 
. . 

a positive correlation between export growth and 

productivity growth. 

(3.) a continued increase in the capital-labor ratio; 

(4.) steady capital-output ratios (however capital may be 

measured), or at least the absence of clear long term trend 
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in the positive or negative direction, once less than full 

capacity utilization was taken into account; 

(5.) a constant rate of profit on capital (Economists have 

questioned the degree of confirmation of this fact, but it remains 

accepted as a broad generalization by orthodox economists.) 

(6.) a constant share of investment in output and profits 

in income (a fact that followed from facts #4 and #5)'; 

(7.) no tendency for country growth rates to converge 

(Kaldor, 1958, 1966a). 

Kaldor claimed that Solow's growth model could explain these 

facts. The artifice of exogenous technical progress in the Solow 

model generated, but did not explain the existence of productivity 

growth (facts #l, 2). In the Solow model, which assumed 

diminishing returns, an increase in the capital-labor ratio (fact 

#3) involved a rise in the capital-output ratio and a fall in the 

rate of profit and the share of profit in income, outcomes which 

conflicted with the stylized facts (#4,5,6). The Solow model 

predicted that countries' growth rates tend to converge (in 

conflict with fact #7). Assuming identical production function, 

perfect capital markets and complete mobility, capital flowed from 

rich to poor countries, where the rate of profit on capital was 

highest. This tendency to convergence was reinforced by the 

diffusion of technical progress from rich to poor 

countries. 

In fact, the new classical growth economists of the 1980s made 

the same criticisms of the Solow model as Kaldor. Given their 
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shared criticisms of neoclassical growth economics, the Kaldor and 

the new growth models are similar. Both models attempt to 

endogenize growth and assume increasing returns. In both models, 

long run growth is driven by the accumulation of embodied knowledge 

by forward-looking, profit seeking agents. Indeed, the new 

classical criticisms of the neoclassical model reflects the old, 

Kaldor-Solow controversy over growth via the medium of an 

optimizing model. 
\ 

The debate over growth in economics initially began in the 

195os, just when growth became an issue in policy circles. Growth 

rates in the developed countries were remarkably high. The media 

reported that Japan was growing by 10 percent per annum, the Soviet 

Union by 7 percent a year. Western policy-makers, who just learned 

about demand management, wanted to achieve comparaable rates of 

growth. Meanwhile, Kaldor and Solow were embroiled in the 

Cambridge-Cambridge controversy over how to model production and 

growth. Both of these economists saw that technical progress 

provided the main explanation for the rapid growth of production, 

but their models of technical progress differed. 

In Kaldor's theory, which assumed "full employmenttl, technical 

progress was embodied in capital and, at any time, the growth of 

demand for capital would induce technical progress. In 

neoclassical parlance, it was as if movements along the neoclassical 

production function led to a shift in that function. There were, 

in other words, increasing returns. According to Kaldor, 
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"allowing for increasing returns was 

sufficient to cause the whole structure to 

collapse like pack of cards. It is high time 

that the brilliant minds of MIT were set to 

evolve a system of non-Euclidean economics . . . 

where such abstractions are initially 
, 

UnnecessaryI' 

(1966b, p.297). In light of his theory, Kaldor argued that .demand 

management that promoted capital investment would increase the rate 

of technical progress and the "potentialtl rate of growth. 

Orthodox economists in the US have not thought highly of 

Kaldor's growth theory. In 1989, a conference was held on economic 

methodology that included a paper on new classical economic growth 

theory.*' In the discussion of this paper, Hal Varian, an orthodox 

economist, explained the recent background to the new classical 

growth theory and emphasized that its development was prompted by 

current economic events. A member of the audience asked Varian 

what he thought of Kaldor's growth economics. Varian shrugged and 

replied, tlKaldor had no theoryI'. Similarly, Romer (1989) dismissed 

Kaldor as a theorist because he lacked 'Ia tractable alternative 

model'@.81 

Kaldor attained prominence in the interwar period for his 

contributions to mainstream economic theory.82 He knew little 

differential calculus, Samuelson (1988) commented, but, when 

confronted with a model of the trade cycle or production, he saw 

llhow it had to got' (p.321). After World War II, Kaldor's research 
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changed tack. Its aim was to develop an alternative model to the 

one used by mainstream economists. 

In a discipline that was becoming increasing mathematical, 

Kaldor's lack of mathematical sense was a drawback. His 

mathematics ressembled Keynes' in style, though Kaldor lacked 

Keynes' training in the field. Most of Kaldor's mathematics was 

algebra and each algebraic term had an observational counterpart. 

His mathematical arguments started off with an identity,\ which he 

elaborated into a causal relation, in the same way that Keynes's 

investment multiplier came from the GNP accounting identity. Most 

of his models did not solve for anything, but instead were a series 

of derivations. Even with the help on various occasions of 

Champernowne,83 Mirrlees,84 Hahn and Pasinetti,85 Kaldor failed to 

anticipate technical problems, which upon occasion got him into 

serious trouble. 

Once Kaldor set out to criticize mainstream economics, he went 

about it like a bull in a china shop. Wishing to make an 

independent attack on orthodox economics, Kaldor focused on a 

problem with which the mathematical economists at the time were not 

equipped to deal, the problem of increasing returns. 

. . 8 



B. Kaldor's Theory of Increasing Returns in Context 
74 

1. Externalities and Equilibrium 

Romer (1983) in this Chicago Ph.D. thesis introduced the 

idea of increasing returns as "as old as the attack on the ideas 

of Malthusll (p.9). The reference is rather obscure, but idea of 

increasing returns indeed had a turbulent history. _ 

The idea of increasing returns originated in the' first three 

chapters of Adam Smith's Wealth of Nations (1776). There. Smith 

discussed the scale economies that allowed increased specialization 

both within the factory and between trades as a result of learning- 

by-doing and indivisibilities. As Romer (1986b) narrated, 

Adam Smith, took the view that the degree of 

specialization at any point in time was 

limited by the extent of the market. He went 

on to suggest . . . [that] increases in income 

lead to increases in demand, which can in turn 

lead to increases in the extent of the market. 

These permit increases in specialization, 

which permit output to grow faster than 

inputs, so per capita income rises. Repeated 

in circular fashion, this argument appears to 

generate a process of unending economic 

growth. 

Marshall's Princioles (1896) developed the idea of increasing 

returns. He defined two types of scale economy. Internal 
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economies depended on the resources of the firm. External 

economies depended on the general development of industry and 

included, for example, aggomeration economies and trade knowledge. 

Any firm's supply curve depended on both internal and external 

economies, so that marginal cost depended on both scale and time, 

with cost reductions irreversible because learning was involved. 

Hence, Marshall considered that, "the high theme -of economic 

progress . . . [showed] the insufficiency of the statical‘met.hodJt.e6 

In the 192Os, a debate occurred 

Marshall's discussion of increasing 

participants in the debate, Marshall's 

over the implications of 

returns. One of the 

protege Pigou accepted the 

notion of external economies, but attempted to keep the statical 

analysis (Pigou, 1927). Pigou identified external economies at the 

level of the competitive industry, which was composed of 

Marshallian competitive firms, which chose a quantity and then set 

the price, a process akin to monopolistic competition. External 

economies continuously, slowly and imperceptively reduced the costs 

of the firms in the relevant industries. Pigou proposed a subsidy 

on these industries so that prices egualled true marginal costs and 

the level of output was socially optimal. 

Kaldor learned about increasing returns from his tutor, Allyn 

Young, a former Harvard Professor and fellow at the National Bureau 

of Economic Research who became head of the economics department 

at the LSE in the late 1920s. Young, an avid reader of Marshall's 

Principles, contributed to the continuing debate about increasing 
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returns." He thought that Marshall's concept of external 

economies was useful because it explained why the presence of 

increasing returns did not lead to monopoly. There were two sorts 

of external economies, which reduced costs: (i.) Internal economies 

of firms producing inputs figured as external economies from the 

point of view of firms buying these inputs. The presence of these 

external economies, Young suggested, did not 'hinder the 

establishment of a stable, static equilibrium. (ii.) The creation 

of new products and new industries also acted as external 

economies. Young analyzed these economies using Marshall's concept 

of elasticity. Increasing returns meant that the continued 

increase in the production of the goods of any one industry imposed 

a proportionately smaller opportunity cost in terms of other 

industries. If two industries produced with increasing returns and 

demand for the goods of each industry were elastic, then the demand 

for either industry would be the reciprocal of the supply of the 

other. In these conditions, Young stated, 

(n)o analysis of the forces making for 

economic equilibrium, forces which we might 

say are tangential at any moment of time, will 

serve to illumine the field, for movements 

away from equilibrium, departures from 

previous trends, are characteristic of it.88 

As Young lectured to his students (who included Kaldor), 

(s)eeking [static] equilibrium conditions 

under increasing returns is as good as looking 
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The equilibrium in question was a dvnamic equilibrium which could 

be studied only at the macro-level, Young emphasized. 

Young appended a note to the 1928 essay, in which he changed 

tact. The note, designed to persuade welfare economists to 

incorporate increasing returns into their analysis, stated the now 

well established argument that increasing returns were consistent 

with a static equilibrium, as long as the production possibi,lities 

curve was less sharply convex than the indifference curve.go 

Perhaps it was this appendix that has led the new classical 

economist Romer to miss the main point of Young's essay about 

external economies and disequilibrium. According 

thesis (1983), 

to Romer's Ph.D. 

in an article published in 1928, Allyn Young 

gave a verbal discussion of economic growth 

driven by the increasing returns resulting 

. from specialization. Much of this discussion 

is problematical, but he seems to understood 

unbounded growth, that externalities could 

permit the existence of a competitive 

eguilibrium.g1 

And later, Romer insisted that 

Young . . . following Adam Smith . . . appears to 

generate a process of unending economic 

growth. Moreover, Young argued, the 

increasing returns due to specialization could 
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be view as being external to any individual 

firm in the sense proposed by Alfred Marshall, 

so this explanation of growth could be 

consistent with the existence of a 

decentralized, competitive equilibrium.g2 

Romer subsequently devised what he called the "Marshall_-Young-Romer 

modelI of production with externalities. This model pertained to 

the static equilibrium at the level of the firm. \ 

The externalities that Romer had in mind were technological 

externalities, as defined by Scitovsky (1951), Meade (1952), Arrow 

(1962) and Chipman (1970). They assumed the existence of 

identical, small, competitive firms, in the absence of the 

Walrasian auctioneer. The technological externalities involved a 

parameterization of the production function, so that the output of 

the firm depended on its own inputs and the outputs and inputs of 

other firms. Each firm knew that its productivity depended on the 

aggregate scale of output, but because each firm was small, they 

neglected their contribution to aggregate output. Since 

technological externalities involved the direct interdependence 

between firms, it had no affect on the establishment of a unique 

general equilibrium. However, this general equilibrium was Pareto 

sub-optimal, since firms' marginal costs diverged from social 

marginal costs. This outcome called for taxation or a change in the 

institutional setting. 

Kaldor had no interest in the problem of fitting 

external economies into the static, marginalist framework. He 
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extracted that part of Young's discussion of increasing returns 

that Young took from Marshall and Marshall took from Smith -- which 

Romer, educated in the Walrasian tradition, later would dismiss as 

lVproblematicaltt. 

2. Kaldor's model of increasing returns _ 

I 

With great originality, Kaldor elaborated a thesry of 

increasing returns in order to explain his stylized facts.g3 

Kaldor derived his theoretical model of increasing returns as 

follows. He assumed a constant capital-output ratio, so that 

(30) l AK/K = AY/Y, 

the rate of growth equalled 

Next, he defined that 

(31.) I = AK. 

Substituting this identity 

rearranging gave the Harrod 

growth, 

(32.) I/Y = (AY/Y)/(K/Y) l 

the growth of output. 

into equation 30, dividing by Y/Y and 

Domar equation for the natural rate of 

Kaldor expressed the left hand side in terms of investment 

(rather than saving) since in Keynesian theory, investment was the 

exogenous variable that caused output to rise so that in 

equilibrium savings equalled investment.g4 
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Plgure 7. The Interaction of the TechnIcal Progress 

Function (T) and the Inducement to Invest Function (4'L). 
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Until firms found their long run equilibrium growth level, 

the rate of profit would vary, so that 

(33.) I/Y = (AY/Y)/(K/Y) + p AT/AK. 

This equation in per capita terms was represented by Figure 7. 

This Figure took the conventional form of the'geometry of 

growth economics in the 1960s.g5 Thus the geometric& form of 

this Figure was identical to Solow's Figure (2, above), but the 

axes bore different labels. 

In Kaldor's figure, the vertical axis stood for productivity 

growth and the horizontal axis for the growth of capital per 

worker. When the growth of capital per worker was less than the 

equilibrium growth rate (*), productivity grew faster than capital 

per worker and the rate of profit on capital increased. 

Conversely, the rate of profit fell when capital grew faster than 

the equilibrium rate. Given profit-seeking, oligopolistic firms, 

the rate of investment per worker (along I/L) tended to the level 

(*) at which the rate of profit was maximized. At this long run 

equilibrium level, productivity growth equalled the growth of 

capital per worker and the rate of profit and the capital-output 

ratio were constant. The coordinate (y-e)*(k-e)* described a 

position steady growth and explained facts #l-5. 

The nonlinear curve T in figure 7 stood for the technical 

progress function, which Kaldor stated for convenience in the 

linear form 
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(34.) P = r' + n (kg-f?), t=AL/L 

P=(AY/Y)-(AL/L) 

k'=AK/K 

This meant that the growth of productivity (P) was associated with 

the rate of growth of capital per worker. In other words, there 

were increasing returns. As Figure 7 shows, techni_cal progress 

was not constant and 

economic growth and 

was determined endogenously, by the rate of 

investment. At any 

development, technical progress exhibited 

technical progress function shifted up 

progress was irreversible) given a change in 

of a society. 

stage of a 'society's 

an upper bound. The 

(never down, because 

the technical dynamism 

Kaldor intended the technical progress function to replace 

Solow the production function, which made economic growth a unique 

function of the growth of factor supplies, given a residual due to 

exogenous technical progress. Kaldor argued that Solow (1957) used 

circular reason when he identified technical progress as a 

residual: From the outset, Solow, normalizing for labor, 

identified the the share of profits in income by the slope of the 

production function. This meant that the shift in the curve must 

be due to a residual entity that did not receive a factor reward. 

In contrast, in Kaldor's model, investment, leading to increases 

in the capital-labor ratio, caused the production function itself 

to shift. Thus Kaldor found "no conceivable operation by which the 

slope of this 'curve' could be identified" (Kaldor, 1958, p.206). 
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Kaldor's case was less clear cut than his debunking of the 

production function made it out to be. It was obvious to his 

neoclassical audience that the technical progress function 

(equation 39) was the same as a Cobb Douglas production function, 

normalized for labor and differentiated totally in respect to time. 

But the linear technical progress function could not be integrated 

to obtain the Cobb Douglas function, because the 'constant of 

integration depended on the initial conditions, the distribution 

of capital and labor between industries and the age-distribution 

of the capital stock.'" In other words, in Kaldor's model, progress 

was path-dependent. In contrast, the Cobb-Douglas production 

function was independent of initial conditions. 

V. The New Growth Models 

The growth models of the 198Os, like the Kaldor model, are 

designed to incorporate increasing returns and endogenize growth, 

replace the neoclassical model of exogenous technical progress, and 

explain the stylized facts of growth. The leading proponents of 

the new growth theory are new classical economists, including 

Lucas; his student, Paul Romer; and Romer's student, S. Rebelo. 
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Facts, it is often said, are made, not given. 

The neoclassical model predicted that countries income levels 

will converge to a common growth path, on the grounds that 

technical know-how diffused and capital flowed from rich to poor 

countries. Economists in the 1970s tested this prediction by 

regressing country's per capita growth rates on thei_r per capita 

income, which served as a proxy for the level of technology. The 

tests resulted in a negative regression coefficient, which'confirmed 

the theory." With the development of new classical economic growth 

models, these statistical results became open to question. 

Baumol (1986) used the Maddison sample to show that the growth 

rates of the sixteen richest countries today converged from 

disparate levels in 1870. Romer (1986) responded that an ex ante 

sample, that is, a sample of growth rates of the richest countries 

in 1870, might give a different result. de Long (1988) followed 

up Romer's suggestion. Using the Maddison sample, he showed that 

the growth rates of the richest twenty-two countries in 1870 had 

not converged over the ensuing century. 

In response to de Long, Baumol and Wolff (1988) took an ex ante 

sample off the Summers-Heston data for 124 countries, 1950-1980. 

They showed that the growth rates of the richest fifteen countries 

converged. Romer (1989) then replicated the Baumol and Wolff 

study. Using a sample of 115 countries, which involved a lower 

quality of data, he showed that growth rates during 1960-1980 

showed no tendency to converge. Taking all countries together, 



85 

Lucas concluded, the correlation between their "income levels and 

rates of growth . . . would not be far from zero" (1988, p.4). 

In sum, the debate over the existence of convergence vs 

nonconvergence rested on sample selection bias. Economists found 

samples to confirm their competing views of the facts. 

Nevertheless, the new classical growth literature has treated 

the facts of growth as given. The new classical economists have 

said their contribution is to replicate, account for, and offer an 

alternative interpretation of the facts, on the supposition that 

such a redescription increases understanding and amounts to a 

discovery. 

B. What is New Classical about the New Growth Models? 

In the context, of orthodox economics, new classical 

economics represents a technical advance. The new classical 

school, as it developed the 197Os, treated the assumptions of the 

competitive equilibrium program -- perfect rationality, 

optimization and so on -- so seriously that exemplified the 

orthodox, Walrasian research program. But, while Walras (1900) 

invited economists to treat the competitive price mechanism as a 

branch of the mathematics of maximization, he did not know enough 

calculus to suggest mathematically why his price formulae solved 

the problem of maximization subject to constraints. The problem 
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received little attention until the renewed interest in a general 

theory of equilibrium in the 1930s. Samuelson, Arrow, Debreu, 

Koopmans, and others then spent thirty years finding and applying 

the tools of vector and differential calculus to show the 

conditions in which the competitive price equilibrium existed 

mathematically and was stable at any point in time. _ The latter 

1950s found Samuelson and the next generation of mathematical 

economists faced with the problem of showing the optimal'time-nath 

of the competitive equilibrium. The new classical growth models 

are in part the outcome of the solution of this mathematical 

problem. 

The content of the new classical growth theory is far from 

novel. There is a large overlap between the developments in trade 

theory during the last decade and growth theory. Trade theorists 

challenged the neoclassical model based on comparative advantage 

and constant returns to scale. Increasing returns due to the 

division of labor and specialization became as important as 

comparative advantage as a source of trade: while comparative 

advantage explained why countries with different endowments traded, 

increasing returns could explain why similar countries traded. The 

problem was that increasing returns conflicted with the assumption 

of perfect competition. To solve this problem, trade theorists 

identified increasing returns as an external effect." As Krugman 

explained, 'I(t traditional way to model trade in the presence 

of increasing returns has been to assume that these scale economies 

are external to the firm. This assumption has been historically 
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favored because it allows one to avoid the problem of market 

structure: with external economies one can preserve the assumption 

of perfect competitiontt (1985, p.45). For this reason, the new 

growth models also has treated increasing returns as an external 

effect. 

Since the new growth theory has relied heavily pn the trade 

and externalities literature, does it matter that new classical 

economists have developed this growth theory? In some ways, yes, 

in others, no. 

Yes, in four ways: 

1. The new classical models are a logical outcome of the new 

classical research agenda. 

New classical economics assumed that markets continuously 

clear. Business cycles, which in the neoclassical model 

represented deviations from an exogenous trend, in the new 

classical models reflected jumps of the trend due to exogenous 

shocks, which arose from technological change or government 

intervention. Instead of the neoclassical organization of the time 

series as a deterministic trend and a stochastic component, new 

classical economists modelled a stochastic trend and a transitory 

component. The transitory component arose while agents collected 

full information about shocks. Real business cycle theory in the 

1970s studied the transitory component. The point of the new 

growth theory is to explain the trend. 
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2. That the new models were presented by Lucas and his 

associates attracted the interest of the economic establishment in 

growth. The growth models have appeared in unpublished papers 

circulated, privately, as departmental working papers or NBER 

conference papers, amongst orthodox economists working on optimal 

growth theory. Not all the papers have been available upon the 
I 

request of economists at large. 

3. The new growth models require mathematical expertise, which 

has characterizes the new classical school. 

In the 196Os, Uzawa and others constructed growth models with 

increasing returns using the Hamiltonian formalism, but their 

methods were not standardized and the mathematics went over the 

heads of the vast mass of economists. In the 197Os, economists 

used Hamiltonians to formalize the optimal use of exhaustible 

resources." Graduate economics courses became more mathematical 

and, at least at MIT and Chicago, included variational calculus, 

a course taken by undergraduates in physics. As Romer reflected, 

"in the years between 1970 and 1980, the discussion of the theory 

of aggregate consumption moved from a point where it would have 

been impolite to mention Euler equations to a point where it was 

impossible to carry on a discussion without them" (1989, p.52). 

It is not surprising that the recent crop of graduates who have 

excelled in applied mathematics should acquire an interest in new 

classical research. 

4. Since the 197Os, new classical economists have attempted 

to replace the neoclassical paradigm of demand management. This 
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aims has dominated the new growth theory. Lucas has stressed the 

deficiencies of the neoclassical growth model. As he remarked, 

(1985/88, 

Solow's 1956 conclusion that changes in saving 

rates are level effects . . . was startling at 

the time, and remains widely and very 

unfortunately neglected today. The 
I 

influential ideas that changes in the tax 

structure that make savings more attractive' 

can have large, sustained effects on an 

economy's growth rate sound so reasonable, . . . 

but it is a clear implication of the 

[neoclassical] theory we have that it is not 

. . . [Neoclassical] theory is not, as it 

stands, a useful theory of economic 

development: [witness] its apparent inability 

to account for observed diversity across 

countries . . . I will begin by considering an 

alternative, or at least a complementary, 

engine of growth to the 'technological change' 

that serves this purpose in the Solow model 

pp.12, 17). 

No, in three ways: 

1. The new classical real business cycle models assumed 

rational expectations, meaning that agents know the true 
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econometric model of the economy, up to a serially uncorrelated 

error. Rational expectations implied continuous market clearing, 

in the sense that, abstracting from white noise, every price was 

market-clearing for agents who know the price, with the result that 

agents successfully optimize. These two assumptions, of rational 

expectations and successful optimization, defined the new classical 
* 

economic research project in the 1970s. 

The new classical economists have relinguished these stringent 

assumptions in their growth models. Consumers and firms continue 

to have rational expectations about future prices, but in the 

deterministic context of long run growth, rational expectations, 

can mean nothing more than perfect foresight or the existence of 

perfect futures markets. As Lucas explained, 'I(f this particular 

[Hamiltonian] model, with convex preferences and technology and 

with no external effects of any kind, . . . the optimal program is also 

the unique competitive equilibrium program, provided . . . [that] 

consumers and firms have rational expectations about future prices. 

In this deterministic context, rational expectations just means 

perfect foresightl' (1985/88, p.12). 

2. New classical economists in the 1970s assumed continuous 

optimization. In the new growth models that attribute increasing 

returns to the external effects of capital accumulation, agents 

have perfect foresight only of private costs, which diverge from 

social costs, so that the path of the economy is Pareto sub- 

optimal. 
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3. Lucas charged that the neoclassical growth model cannot 

show the effects of government policy on growth. In light of the 

"Lucas critique" of the 197os, which stated that policy 

interventions were ineffective, this charge comes as a complete 

turnabout. 

In sum, the 

197os, has proved 

new classical economic research prpject of the 

to be unsustainable in modelling growth. 

\ 

C. Increasing Returns, Externalities and the Cobb Douglas 

Production Function 

Romer, as a Ph.D. student at the University of Chicago, 

recognized that 

increasing returns [to scale] is surely most 

controversial [topic]. A presumption in favor 

of diminishing [marginal] returns seems to 

persist despite repeated findings that the 

rate of growth of inputs cannot account for 

the rate of growth of output 

(p-6) l As Romer explained, increasing returns to scale seemed to 

conflict with the marginal productivity theory of income 

distribution. It is, he stated, 

mathematically impossible for all factors of 

production to be paid their marginal products. 

With increasing returns, this would more than 

exhaust total output. Models constructed 
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during the 1960s resolved this by assuming 

that A [exogenous technical progress] came 

from the sky, or perhaps from the National 

Science Foundation, and therefore did not need 

to be compensated in the market 

(P.99). Romer and Lucas avoided these problems by modelling 

increasing returns as the external effect of capital accumulation. 

In particular, they amended the Cobb-Douglas production 

function by a multiplicative factor that represented a positive 

externality. Given this amendment, their production function was 

observationally equivalent to the Solow production function with 

exogenous technical progress. In both models, the growth of the 

factors, weighted by their shares in income, was insufficient to 

account for the growth of output. The difference between the 

neoclassical model of exogenous technical progress and the 

externalities model was that the assumption of externalities 

involved, in principle, a testable hypothesis about firms' 

behavior. On this basis, the new classical models, in contrast 

to the neoclassical model, proposed to explain productivity growth 

and the effect of taxation on growth. 

The traditional modellins qambit, the oroduction function 

modified bv an externality, when specified as the constraint in the 

dynamic optimization problem, offered the kev to the solution of 

the new classical problem of srowth. 
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Lucas and Increasing Returns 

Lucas modelled externalities to human capital accumulation 

(1985/88). The outcome of the model served to replicate the 

stylized facts of growth, inequality in countries' growth rates and 

the correlation between net exports and growth. In principle, the 

model was testable. But the main purpose of the mathematics was 

exploratory and conceptual: it was intended to direct readers to 

think about growth in a particular way. The new classical 

economists presented many different production functions, that 

constructed different aspects of growth. The (mathematical) media 

was the message. 

Lucas stated the production function, introduced by Uzawa 

(1965), 

(35.) Y = AK(t)a[w(t)h(t)L(t)]l-ah,(t)V, O<wcl, O<h<oo, -- a<l, 

where A stood for the level of technology; w, the fraction of work 

time that the devoted to the production sector: l-w the fraction 

devoted to the education; and h, the internal effect of the level 

of human capital. A worker who chose to accumulate human capital 

did so because of the private benefits that this would bring. 

Because workers interacted, all workers actually benefitted from 

the additional training of any one worker. The external effect, 

h,, multiplied the productivity of each worker at any skill level. 

As a result, this model, Lucas stated, "exhibits sustained per- 

capita income growth from endogenous human capital accumulation 

alone: no external 'engine of growth' is reguiredtt (p.19). Lucas 
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proposed a education subsidy to internalize the externality and 

increase the rate of growth. He estimated that differences in the 

levels of human capital between countries completely offset the 

difference in the rate of return on capital between poor and rich 

countries 

countries 

and posited that capital failed to flow equally between 

because of capital market imperfections (Lucas, 1990). 

"The Marshall-Young-Romer Model'r 

Romer presented a production function with specialized inputs, 

which behave like an externality. The production function stated 

that 

(36.) Yi = Lil-a cm=, xia, i=1,2,3, . . . . n, a<l. 

where xi stood for specialized intermediate inputs.loO Each firm in 

a region produced one input and was monopolistically competitive. 

Together the firms produced a range M of inputs, that cost K in 

terms of resources foregone. That is, 

(37.) K = xiM, 

or 

CXi = tG/M. 

The production function 

(38.) Yi = Lil-a~i"Ma. 

Throughout Romerls 

could be rewritten as 

presentation of this model, the last term 

in the production function was written as Mlea, which is incorrect. 

The mistake had no effect on the substance of the argument. Many 

readers (not even Romer in reading the proofs), taking Romer at his 



96 

word, would not notice the error. If so, one might ask, why 

publish the mathematics at all? Following the mathematics enforced 

a distinct mode of thinking and argument. Thus the whole dispute 

between neoclassical and new classical growth theory came down to 

one about specifications and formalisms. 

In the production function (equation 38), each -firm planned 

the use of its paid inputs Li, nit on the assumption'of constant 

returns to scale, without taking into account the range of inputs 

produced by the region. Yet, the greater the range of inputs, the 

greater the productivity of the region. That is, at the regional 

level, there were increasing returns to scale. As Romer detailed, 

II( you wanted to set up a business to produce new computer 

chips, land in Nebraska would be cheaper [than in Silicon Valley], 

but just try to find a firm nearby with the right equipment for 

baking, etching, and testing silicon wafers" (1989, p.108). The 

extent of the market for specialization was limited by the costs 

of transport. This model generated a static pattern of trade based 

on geographical features, which replicated the persistent cross- 

country differences in growth and correlation between exports and 

growth.lol 

D. The Hamiltonian Formalisms 

The new growth models applied the Pontryagin-Hamiltonian to 

demonstrate the existence of the (sub)optimal path of growth. Thus 

Lucas, for instance, 'Ihop that this application of Pontryagin Is 
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Maximum Principle, essentially taken from David Cass (1961), is 

familiar to most of you. I will be applying these same ideas 

repeatedly in what follows" (1988, p.9).lo2 Romer stressed that 

"the central too1 used in the characterization of dynamic 

competitive equilibrium models is a [continuous time extension] of 

the Kuhn-tucker theorem" and spent six pages reviewing-the "Ramsey- 

Solow-Cass-Koopmans type" model (Romer, 1989, p.70). 
ld3 

The new graduate economics textbooks train students,to apply 

the Hamiltonian formalisms to growth. Blanchard and Fisher (1989) 

asked students several questions on this topic. 

Blanchard and Fisher: 

Chapter 2, Problems, Question 9 

This question required students to read an unpublished paper 

by Rebel0 (1987). How, the students were asked, did Rebel0 

"reproduce the Kaldor-Solow fact of growth"? The answer went as 

follows. 

Assuming a perfectly competitive economy with intertermporal 

efficiency pricing, Rebel0 set up the utility maximizing problem 

originally posed by Ramsey, 

(39a.) maxJ = sz U(C(t))ebPtdt. 

In order to generate a constant rate of growth, Rebel0 made the 

output a linear function of capital, 

(39b.) K = BKs _ _ O<s<l, 
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where B was the average product of capital (Y/K) and s was the 

propensity to save. The production of these consumer goods 

involved either constant or diminishing returns, that is, 

(39c.) C= A[(l-s)K]", OI(r(l. 

Transforming the integral into a Hamiltonian gave 

(40.) H = U(C) + p,BKs + pc[A((l-s)K)"-C], 

where PKI PC were prices of capital and consumer goods in 

competitive markets with perfect foresight. The' marginal 

conditions for an efficient economy were as follows: 

(41a.) pc = U'[A((l-s)KIQ, 

that is, the price of consumer goods equalled the marginal utility 

of consumption; 

(41b.) pKB = p$[A((l-s)K]=-', 

which was the firm's profit-maximizing condition;lo4 

(41c.) PK = -aH/aK + PPKl 

which was the first tlcanonical't equation; 

(41d.) K = 8H/ap, = BKs, 

which was the second "canonicalt' equation; and 

(41e.) lim pKKemPt, 
t-->co 

which ensured a convergent solution. Given these five conditions, 

and the initial capital stock, Rebel0 solved for the steady state 

growth rates of capital, consumption and output. 

Rebel0 contrasted his result with Solowts, stating that 

Solow (1956) concluded that the savings rate 

determines only the steady state levels of the 
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different variables 

. . . Our simple model 

that this result 

exogenous nature of 

neoclassical model 

(Rebelo, p.15). Of course, 

but not their growth rates 

can be used to illustrate 

is an artifact of the 

steady state growth in the 

that growth depended on savings in 
. 

Rebelo's model was merely an artifact of his use of the Hamiltonian 

formalisms. \ 

Blanchard and Fisher, 

Chapter 2, Problems, Question 8. 

In this question Blanchard and Fisher asked students to solve 

for the optimal path of an economy with increasing returns to 

scale. The answer can be found in Romer, 1989. 

Romer stated the traditional model of an externality,lo5 

(42a.) Yi = F(KiaLil-aK,'), a<l, v>O, (a+n)>l, i = 1,2,3 . ..n. 

where Yi, Kit Li stood for the output and inputs of the perfectly 

competitive firm i and K, stood for the capital of the n-l firms in 

the industry of which the firm i was a part.lo6 The capital of the 

industry was a proxy for the state of knowledge, which increased 

when individual firms invested in research and development. 

Knowledge was a public good because it was nonrival (the same 

information could be produced at zero cost) and nonexcludable 

(patents did not give property rights in general knowledge). Since 

firms ignored the nonappropriable contribution to productivity, 

factors were paid according to their subjective marginal product. 
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Romer next defined the planning problem, to maximize utility 

over the infinite horizon, given a constant rate of growth of the 
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Recent results of tests of the existence of externalities have 

labor force, 

(43a.) ,,J = Jzu(c(t))emPtdt. 
, 

Maximization was subject to the accounting identity 

(43b.) k(t)= f(k) - c(t). 
\ 

and the production function constraint 

(42b.) f(k) = k(t) a+nKr(t)q, K,=KJK, 

where K stood for the total capital stock (K=ki + K,), k was 

normalized for labor, and K, represented the importance of the 

positive externality. Transforming the integral into the current 

valued Hamiltonian gave, 

(44.) H (k,p,K,) = u(c) - p[(k"*N')-c]. 

In this expression, the multiplier p was the imputed price of the 

investment and the bracketed term after it stood for investment. 

The two tlcanonical" equations were 

(45a.) k = aH/ap 

and 

(45b.) P(t) = - aH/ak + PP, 

where the second term stood 

of capital, 

(45c.) aH/ak = p aK,'ka+'-' 

In steady state growth, the 

for the price of the marginal product 

= p f'(k). 

price of investment was constant, 
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(45d.) p=o. 

This formulation yielded an intriguing result. In the case 

of diminishing returns to capital -- with (a + ~)<l -- as the 

stock of capital increased, the marginal product of capital tended 

to equal the rate of discount -- f'(k)=p -- which was consistent 

with the "golden rule". As a result, output per capita would be 

constant, as in the Cass-Koopmans model. In the case of increasing 

returns to capital -- (a + q)>l -- the marginal product'of capital 

tended to exceed the rate of discount --f'(k)>p. In the phase 

plane, there would be no stationary point. The economy would 

experience a positive, constant rate of per capita growth with a 

risinq capital-labor ratio, which was consistent with Kaldor's 

stylized facts. 

In contrast to the neoclassical model, in which productivity 

growth was exogenous, Romer argued that in his model growth was 

endoqenous, dependent as it was, on the externality that arises 

from investment in knowledge. Thus his model, unlike the 

neoclassical model, offered a basis upon which to analyze the 

effects of taxation. In reaching this enthusiastic conclusion, 

however, Romer confused his model with reality. His mathematical 

result, he stated, 

shows that increasing returns [to scale] are 

not by themselves enough to sustain persistent 

growth. In addition, the private marginal 

product [of capital] must not fall too rapidly 

as k grows 
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(1989, p.94). This restriction was merely an artifact that arose 

from the use of the Hamiltonian formalism, given the assumption of 

an external effect of investment in knowledge. 

E. The Limitations of the Hamiltonian Formalisms 

The contribution of the new growth models has been to put the 

old ideas of externalities and specialization into an acceptable 

formal framework through which to trace out their role in economic 

growth, so as to replace the neoclassical model. As Lucas stated, 

while it is not exactly wrong to describe these 

differences (in cross-country UVknowledge") by an 

exogenous, exponential trend . . . . neither is it useful 

to do so. We want a formalism that leads us to think 

about individual decisions to acquire knowledge, and 

about the consequences of these decisions for 

productivity 

(1988, p.5). 

Mathematics, according to Lucas, is no mere neutral language, 

as Samuelson has claimed. Rather, mathematics provides the 

problem-solving techniques that provides the tools to forge ahead 

in certain directions. Some mathematical formalisms have superior 

heuristic power. They let economists say more than other 

mathematical syntaxes. Each syntax also imposes its own 

restrictions (an issue that Lucas ignored) on what economists can 

and cannot say. 
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The formalisms of the new Walrasian growth theory admit an 

interpretation in terms of realistic, institutional detail about 

which the neoclassical model of growth had nothing to say. Within 

the Walrasian paradigm itself, the new growth theory offers an 

improvement over the stationary, capital theoretic models of the 

1960s. Orthodox growth theory now has more general models, which 

can produce steady per capita growth. 

At the same time, the Walrasian growth model, of a Hamiltonian 

function constrained by a production function, restricts economic 

thinking about growth to a utility maximizing framework that 

assumes a competitive economy in continuous equilibrium in which 

output depends solely on factors of supply. The mathematical 

conventions of the the new growth theory mean that the growth path 

of the economy into infinite time is entirely deterministic. It 

is impossible in this context to think of growth as a 

developmental, time-dependent process, with largely unpredictable 

global properties. 

The Hamiltonian formulation in the new growth 

internally inconsistent. It implies that utility per 

conserved along an optimal path along which consumption 

is srowinq. The new classical economists specify 

models is 

capita is 

per capita 

production 

functions that yield increasing returns to public knowledge. But 

advances in the state of knowledge, which take time, are 

irreversible. And the Hamiltonian system produces an optimal path 

that is time-indenendent and irreversible. The new classical 

growth project finds itself hoisted upon its own petard. 
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