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ABSTRACT 

This paper summarizes the background, type, logic, and working procedure of the statistical 

matching used in the Levy Institute Measure of Economic Well-Being (LIMEW) project to 

combine the various data sets used to produce the synthetic data set with which the LIMEW is 

constructed. We use the match between the 2001 Survey of Consumer Finances and Annual 

Demographic Survey of Current Population Survey data sets to demonstrate the procedure and 

results of the matching. Challenges facing the use of this technique, such as the distribution of 

weights, are discussed in the conclusion. 

 

Keywords: Statistical Matching; Survey of Consumer Finances; Annual Demographic 
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1. INTRODUCTION  

 

Statistical matching is a technique used to link records in two separate data sets in cases when 

exact matching of individual records (record linkage) is not possible due to confidentiality 

restrictions on the data available. Statistical matching uses variables common to both data sets to 

identify similar records that can be linked in order to generate a new synthetic data set that 

allows more flexible analysis than would be possible with the two discrete data sets. In 

particular, the associations between variables never jointly observed are often the main 

motivation for interest in such a complete, but synthetic, data set. This interest compels one to 

seek the best possible (in lieu of exact) match between records in the two data sets 

The Levy Institute Measure of Economic Wellbeing (LIMEW) is an extended income 

measure meant to be as comprehensive as possible. Thus, it includes elements not often 

incorporated in to measures of economic wellbeing, such as money income, household 

production, and public consumption. It also treats wealth differently; instead of incorporating 

income from wealth directly, a household’s net home and nonhome wealth are converted into 

imputed rental income and imputed annuity income. The construction of such a comprehensive 

and complex measure requires the integration of many sources of information about households, 

such as the Current Population Survey’s Annual Demographic Supplement for household 

demographic and income data, the Survey of Consumer Finances for household wealth data, the 

American Time Use Survey for household production data, income tax models for household 

tax data, and administrative data for public consumption, because no single source of data has 

all of the information required for this undertaking.  

Combining these sets of data together into a new single measure, however, requires 

some particular statistical matching procedure that must satisfy another concern, driven in part 

by the structure of the research project. That is, we want a measure of economic wellbeing that 

is representative at the level of the U.S. national population. This means that we need a 

matching procedure that preserves at least the marginal distributions of the variables of interest 

and this procedure will have to be able to handle the fact that the various sets of data are taken 

from surveys with varying sample designs and weighting schemes.  
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 This paper presents an application of such a matching procedure on which the LIMVEW 

is constructed. The rest of the paper is arranged as follows. The second section presents a review 

of literature concerning statistical matching. The third section outlines the statistical matching 

procedure used in the generation of the LIMEW with the results of matching the 2001 Survey of 

Consumer Finances (SCF) and the 2002 Annual Demographic Survey (ADS) as an example. 

The fourth section discusses properties of the resulting synthetic data set. The fifth and final 

section summarizes our findings, draws conclusions, and lays out challenges yet to be dealt with 

in the procedure. 

 

2. OVERVIEW OF STATISTICAL MATCHING 

 

Statistical matching (or data fusion, as it is called in Europe) is by now a widely used technique 

in producing empirical studies. The method is used in many observational studies in medical 

literature (Little and Rubin 2000; Rubin and Thomas 1992, 1996; Rosenbaum and Rubin 1983). 

In addition to the numerous examples in the field of economics cited by Rässler (2002), there 

are studies by Radner (1981), Wolff (2000), Wolff and Zacharias (forthcoming), Greenwood 

(1983, 1987), Wagner (2001), Brodaty, Crépon, and Fougère (2001), Keister (2000, 2003), the 

Urban-Brookings Tax Microsimulation (Rohaly, Carasso, and Saleem 2005), and the 2003 

Congressional Budget Office report on income tax burdens (CBO 2003). 

In the standard statistical matching framework, one has two data files, file A and file B, 

with a set of common variables Z. File A contains variables X that are not available in file B, 

and file B contains variables Y that are not available in file A. One needs a file with variables X, 

Y, and Z together, but that kind of file is unavailable from a single source. One must then 

combine the two files in such a way that the distributions of the variables of interest remain as 

unchanged as possible.  

Let’s assume that file A (which exclusively has X) is the recipient file and file B (which 

exclusively has Y) is the donor file, because we want to transfer the information about Y in 

donor file B to the recipient file A. Combining these two files is usually carried out by using 

some distance function to assess the similarity between the records in each file. The distance 

function, constructed from the common variables Z in both files, is used to search for the most 
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similar donor record for each recipient record (so-called nearest neighbor matching). Then the 

variables of the donor (Y) are added to the recipient file leading to a new and complete (X, Y, 

Z), but synthetic statistically matched, file. Once the data are matched, the analysis proceeds as 

if the artificial matched file were a real sample representative of the true population of interest.  

The basic assumptions of statistical matching are straightforward. We assume that X 

(observed only in the recipient file), Y (observed only in the donor file), and Z (common both in 

the recipient and donor files) are multivariate random variables with a joint probability or 

density function fxyz, and that no single file has information on X, Y, and Z together. Also we 

assume that the records in both files are drawn randomly and independently of each other from 

the same population. In other words, both samples to be matched are regarded as a single-source 

random sample from the underlying population. Combining the two files is only possible if the 

specific variables, Y and X, are conditionally independent given the common variables Z = z. 

This criterion is called the Conditional Independence Assumption (CIA).  

 

A. Constrained Statistical Matching 

In practice, statistical matching techniques break down into two broad categories: unconstrained 

statistical matching (USM) and constrained statistical matching (CSM). USM uses a distance 

function to find the nearest neighbor in the donor file for each record in the recipient file 

(Radner 1981). In this case, the main criterion is similarity between records in donor and 

recipient files, and the matching is performed by imputing the nearest possible record among the 

closest records. As a result, this procedure allows multiple selections or no selection 

(unmatched) of donor records, which can lead to very different empirical marginal distributions 

of Y or empirical conditional distributions of Y given Z in the statistically matched file 

compared with those in the original donor file. Due to these problems, it is not appropriate for us 

to employ USM in our statistical matching task although USM has been more widely used.  

CSM requires that the weights (and records) in each file be fully used according to the 

following constraints (Rodgers 1984) in which file A has n and file B has m records: 

∑
=

=
m

j
iij ww

1

,  for i = 1 to n, 
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and 

∑
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n

i
jij ww

1

, for j = 1 to m. 

The advantage of this method is that all of the records in both files are represented in the 

matched synthetic file by using up the weights attached to each record. In other words, the 

empirical multivariate distribution (the marginal distribution, for instance) of the variables in the 

donor file is replicated in the statistically matched file. In order to achieve this result, the 

distance between two matched records must be minimized and the weighted population totals 

should be equalized between the donor and recipient files. These are necessary conditions for 

CSM.  

In order to equalize weighted population totals in both files, a weight-split or duplication 

procedure across donor and recipient records should be undertaken during the matching 

procedure until the weights in both files are exhausted. Note that because matching in the CSM 

context is carried out without replacement, the distances between matched records in the CSM 

will generally be larger on average than in the USM case (Rodgers 1984). 

 In CSM, records are matched according to their rank rather than the absolute values of Z 

or a distance measure itself. This is why CSM is frequently called an imputation on rank and 

why linear programming approaches have been employed in earlier applications of this method. 

The main disadvantage of CSM, however, is due to the nature of rank order matching: some 

matches may be made over large distances that are unacceptable or undesirable to researchers. 

Consequently, additional steps must be taken to minimize this problem. 

 

B. Matching Algorithms 

i. Distance Functions 

Under the assumptions stated above, statistical matching can be initiated. The main task here is 

to search for a donor record Bj(Yj,Zj) whose observed values of the common variables Zj are 

identical or closest to those Zi of the recipient record Ai(Xi,Zi). Usually this searching process is 

carried out using an algorithm based on nearest neighbor matching by calculating a distance 

function. If we wish to use the Euclidean distance, the distance function is given by  
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where g(zk) is an individual weight that allows us to give extra influence to covariates that we 

believe are more important, zki is the kth common variable in the recipient file (A), and zkj is the 

kth common variable in the donor file (B). Then for every record of the recipient file, distance 

measures using all donor records are calculated and selection of the donor record that has the 

smallest distance is made.1 

There are several caveats in constructing such an algorithm. First, based on the 

conditional independence assumption, the two separate files (donor and recipient) should not 

differ significantly in terms of the common variables. This difference is minimized by 

harmonization, which will be discussed later. Second, to account for the different scales of the 

common variables, it is recommended to standardize continuous and even ordinal variables to a 

mean of zero and a standard error of one (Rässler 2002). Third, the algorithm of a distance 

function may use all or some of the common variables to find for each recipient record at least 

one donor record whose distance is minimal. A subjective weight for each common variable can 

be used during this step to incorporate the subjective importance of each variable. Fourth, for 

some of the common variables a perfect match is required. This is done by segmentation and 

restricting records matching within these segments. Finally, one donor record may be used for 

multiple recipient records, and in order to limit the number of times a donor is taken, a penalty 

can be placed on donor records using the distance function. But this restriction may lead to a 

loss in variability or sample size, so abandoning certain matches for a better match is inevitable. 

 

ii. Predictive Mean Matching 

In the predictive mean matching (PMM) framework, the search for the nearest neighbor record 

is carried out using regression estimation rather than a specific distance function. The procedure 

is as follows. First, one or some of the Y variables in the donor file are regressed on the 

common variables Z and the predicted values of Y (Ŷd) are obtained. Then, using the same Z 

                                                 

1 The previous matching algorithm for the LIMEW project was based on this distance-minimization procedure. 
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variables in the recipient file and parameter estimates from the donor file, predicted values of Y 

(Ŷγ) are calculated in the recipient file. The records in each file are sorted in descending order by 

the predicted values of Y (Ŷd in the donor file and Ŷγ in the recipient file), and corresponding 

records from each file based on the predicted values of Y are matched. Note that usually the 

closest record to be matched is defined in terms of the most similar predicted value of Y in the 

USM context, but in the CSM context matching is done based on the rank order of the predicted 

values. Thus, segmentation with balanced weights is again critical here. The caveats that arise in 

distance minimizing matching also apply here. This algorithm is widely used and was adopted 

in the Urban-Brookings micro-simulation model (Rohaly, Carasso, and Saleem 2005), for 

example.  

 

iii. Propensity Score Statistical Matching 

Propensity score statistical matching (PSSM) is often used in observational studies to generate 

suitable control groups that are similar to treated groups when a randomized experiment is not 

available (Rubin and Thomas 1996). PSSM refers to a multivariate method used to construct 

control groups that have similar distributions on many covariates compared with treated groups. 

One significant feature of PSSM is that it reduces the dimensionality problem involved in 

multivariate analysis by reducing the matching to one constructed variable—the propensity 

score. This reduction is a very important advantage for our purpose because in our context a 

large number of differently weighted common variables should be considered in the search for 

nearest neighbor matches. Moreover, separate files may show different empirical distributions 

of the common variables due to the various sampling designs across files—oversampling special 

population groups or different sampling strata and clusters. In this case, PSSM’s dimensionality 

reduction is an attractive alternative.2  

Assuming that the conditional independence assumption holds, the variables observed 

only in one file are conditionally independent from the assignment (T) to this file given the 

covariates Z = z (that is, fX|T,Z = fX|Z and fY|T,Z = fY|Z), then we can say that the assignment of the 

                                                 

2 The predicted mean matching algorithm also reduces the dimensionality of the match, but implements it in a 
different way. 
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records (T) to each file is strongly ignorable given the covariates Z = z (i.e., randomization). 

Rosenbaum and Rubin (1983) prove that if the assignment (T) is strongly ignorable given Z = z, 

then it is also strongly ignorable given any balancing score b(z), (that is, fX|T,b(z) = fX| b(z)  and 

fY|T,b(z) = fY| b(z)). Here a balancing score b(z) is defined as a function b of the observed 

covariates Z. Following this logic, we can conclude that the distributions of the covariates for 

recipient and donor files are also identical if the balancing scores in both files are identical. In 

this regard, matching based on identical common variables can be regarded as an extreme type 

of PSSM, using Z itself as a balancing score (b(z)=z). Various types of balancing scores can be 

constructed and the propensity score is one of them (Rosenbaum and Rubin 1983). Gu and 

Rosenbaum (1993) show that propensity score matching produces matched samples that are 

more balanced than the use of the Mahalanobis distance function or propensity score with a 

Mahalanobis caliper if there are many covariates and large imbalances in the covariates between 

data sets. Therefore, we adopt this approach in our construction of matching algorithm.  

 

3. PROPENSITY SCORE STATISTICAL MATCHING PROCEDURE WITH 

APPLICATION TO SCF 2001 AND ADS 2002 MATCHING 

 

To sum up, the statistical matching procedure used in the LIMEW project is constrained 

statistical matching (CSM) based on estimated propensity scores. The matching is desirable in a 

sense, since each file contains survey weights that make them representative of the population as 

a whole,3 and we will use up the weights in each file during the matching. The matching 

algorithm uses propensity scores to rank observations within prespecified segments and then 

matches records from the donor data file to records in the recipient data file by rank. The 

working procedure is elaborated here.  

 

 

 

                                                 

3 We use the set of all U.S. households as the population of this research. 
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A. Description of SCF and ADS Files 

The two data sets used in this application of statistical matching are the 2001 Survey of 

Consumer Finances (SCF) and the March 2002 Current Population Survey Annual 

Demographic Supplement (ADS). Both surveys are nationally representative and have been 

used by many researchers as major sources of information on wealth holdings (SCF) or income 

(ADS) of households, but have never been used together. This gap in the literature motivates us 

to combine these two data sets using statistical matching.    

The SCF, a triennial survey carried out by the Federal Reserve Board, includes great 

detail on the components of wealth such as bonds, stocks, money market accounts, certificates 

of deposit, mutual funds, checking and saving accounts, real estate, and so forth. It also contains 

information on various types of individual debt as well as demographic information, which 

allow us to calculate net worth values at the household level. The data set contains records for 

4,442 households and missing values have been multiply imputed so that there are 22,210 

records in total. The sampling frame is also important to emphasize. Because the distribution of 

wealth is highly skewed, a simple random sample would under-represent those households with 

high wealth, yielding biased estimates of wealth in the United States (Avery, Elliehausen, and 

Kennickell 1988). In addition, a survey of this type is likely to suffer from the problems of 

nonrandom nonresponse, especially among those with high amounts of wealth. These problems, 

hard to be eliminated perfectly, are addressed by using a dual-sampling frame, in which higher 

wealth households are oversampled using a ”wealth index” (Kennickell 2001, 2003) and 

adjusted using aggregate data on household wealth (Aizcorbe, Kennickell, and Moore 2003; 

Yamokoski and Keister 2006). In this project, we treat the SCF file as a donor to transfer 

information on wealth to the ADS file as a recipient. 

The ADS is an annual survey carried out by the Census Bureau to examine the labor 

market situation and it is the most widely used household survey data to extract information on 

income and demographics in the United States. The data set has 78,200 household records in 

total after cleaning up some anomalies (U.S. Census Bureau 2002). Compared to the SCF, the 

ADS has a fat tail at the lower part of the income distribution due to its original purpose of 

monitoring changes in the labor market. So during the matching, additional care needs to be 

taken for these underlying differences between the two data sets.  
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B. Data Preparation and Harmonization 

Preparation for PSSM (or statistical matching in general) typically involves much work on the 

separate files. The common variables in both files have to be aligned to each other in terms of 

definitions and measurement, and their distributions should be made comparable so that at the 

very least the two files do not differ significantly by means of the common variables. This is 

necessary because statistical matching is founded on the assumption that the two separate files 

are randomly and independently drawn from the same population, although each file is in fact 

produced for different purposes and so based on different designs. Both the creation of the 

matching cells (or segments) and the calculations of the propensity score for ranking records 

within cells in the matching procedure employ these common variables as main criteria. In our 

case, for instance, the age variable in the SCF file has values between 18 and 95, while the 

corresponding variable in ADS file has values between 0 and 90. So we need to truncate the age 

variable at 18 and 90. Also, the occupation code in the SCF public-use file is not the 3-digit 

Census occupation code. It has been recoded to a 1-digit code. Thus, we must similarly convert 

the occupation code in the ADS to match the SCF code. Harmonization across the common 

variables (Z) in both files in this way is required to make the joint distributions of the common 

variables in each file be as close as possible to each other. 

Another concern is the similarity of the distributions of the common variables in the SCF 

and ADS files. Since the data sets we use are intended to be representative at the national level, 

we expect there to be very close correspondence between the two files in terms of the common 

variables. Exceptions to this rule are generally the result of nonexact correspondence between 

the actual records the two files have and this inevitably introduces error into the matching 

procedure due to mismatched samples.4  

 

 

                                                 

4 Matching tax records with census data, aside from the question of different samples, provides a good example. 
Tax records include variables such as return type and marital status that are similar to but distinct from the 
information in the census (which never includes information on tax return type). Return type must then be assigned 
to the records in the census data, using assumptions that limit the categories that can be assigned. “Married Filing 
Separately” can never be adequately assigned, since there are no criteria appropriate to the task. Thus, we follow 
rule of thumb (for example, those in O’Hara 2004) that simply assumes that married couples file joint returns. 
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Table 1. Comparison of ADS and SCF file in Compositions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After cleaning and harmonizing the files, we add the outcome variable (T=1) for all 

records in the recipient file and the outcome variable (T=0) to donor file, and join the files by 

stacking the records up. 

 

Homeowner
ship ADS2002 SCF2001

renter 31.9% 32.3%
owner 68.1% 67.7%

Family Type ADS2002 SCF2001
MC 55.9% 60.3%
FH 27.9% 26.1%
MH 16.2% 13.6%

Elder ADS2002 SCF2001
nonelder 79.4% 78.9%
elderly 20.6% 21.1%

Race 
Category ADS2002 SCF2001
nonwhite 26.1% 23.8%

white 73.9% 76.2%

HH Income 
Class ADS2002 SCF2001
lt $20k 22.5% 25.3%

$20k - $50k 33.8% 34.1%
$50-$75k 17.9% 16.9%

$75k -$100k 11.1% 9.6%
gt $100k 14.7% 14.1%
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C. Weight Adjustments and Segmentation  

After harmonization, we need to adjust the sum of the attached weights for records (weighted 

population totals) in the donor (SCF) file so that they are comparable with those in the recipient 

(ADS) file. Frequently, the recipient and donor files are not from the same year, which means 

that the sum of weights will be different due to population changes. We adjust weights by 

expanding weights in the donor file by the ratio of the sum of weights in the recipient file to the 

sum of the weights in the donor file. This transformation allows all donor records to be matched 

to recipient records with splitting of their weights. Although this weight adjustment could cause 

the means and variances of the variables in the synthetic matched file to be different from those 

of the donor file, in practice we find that they are very close to each other in our case.  

The next step is to separate the data within each file into several discrete cells. This 

segmentation is used either because matches between certain types of records should be avoided 

or because matches between certain types should be required or both. Analogously, to cluster 

analysis, the data are classified into N matching cells, which are identically defined for the 

donor and recipient files in a mutually exclusive and exhaustive way, and matching is allowed 

only within the same cell. Two caveats are important. First, this segmentation primarily depends 

on the purpose of the research or the researcher’s subjective considerations. For instance, a 

female record should be matched only with another female record if the sex variable is critical 

in the research. In this case, the sex variable is regarded as a strata variable and perfect matches 

across files are expected. Of course, more variables and their combinations can be used in this 

way and this segmentation tends to narrow the distance (or variability) between records and 

allows for a tighter match. In the case of SCF and ADS matching, family type, elder status, race, 

homeownership, and household income are selected as strata variables and the combination of 

these lead to 120 discrete cells in each file. This choice is made because differences between 

these subpopulations are the main interest of our research. When strata variables are defined and 

segmentation is done accordingly, propensity scores can be estimated separately or unique 

propensity scores can be constructed for different cells. 

Second, segmentation with balanced weights is desirable. In other words, the weighted 

counts of observations within cells should be balanced as much as they can be between the two 

files. Because matching is allowed only within the same cell, unbalanced segmentation will 

result in unused records in the matching procedure. In practice, it is hard to achieve perfectly 
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balanced weights in segmentation due to the various combinations of strata variables. Table 2 

shows the distribution of weighted observations by cell and source file. As can be seen, there is 

not exact correspondence between cells, even though both surveys are from the same year. The 

differences are due to the differences in sampling frame. Thus, collapsing across cells in later 

stages will need to be done in order to exhaustively match the records in the two files.  

 

Table 2. Comparison of ADS and SCF in Weighted Frequency by Cell 

 

 

  

 

 

 

 

 

 

 

 

D. Propensity Score Estimation 

The selection of the specific common variables in the logit (or probit) model to estimate 

propensity scores should be made carefully to maximize the explanatory power. This is because 

the validity of PSSM relies heavily on the power of the common variables to act as good 

predictors that can be transformed into effective propensity scores. Of course, an important 

subset of the common variables will always be reserved to segment the data (as strata) based on 

the subjective concerns of the research at hand. In the SCF-ADS match, we use sex, 

homeownership, family types, age category, education category, race, household size, 

occupation, household income, existence of property income, existence of self-employed 

ADS
white renter owner renter owner

MC 6,288,450      32,560,596      540,057        7,829,036      
FH 5,876,830      6,877,571        2,006,559      6,011,014      
MH 5,073,342      5,216,404        670,799        1,867,837      

nonwhite
MC 4,970,318      7,565,049        243,752        1,125,922      
FH 5,442,342      2,646,253        601,130        1,021,687      
MH 2,937,753      1,366,267        246,631        311,856        

SCF
white renter owner renter owner

MC 7,881,774      34,561,013      1,024,688      9,772,397      
FH 5,580,812      6,485,042        2,063,104      4,464,706      
MH 4,666,490      4,257,696        339,664        2,216,620      

nonwhite
MC 4,858,145      6,412,491        308,909        1,099,905      
FH 5,733,592      2,835,691        756,155        585,731        
MH 1,849,371      1,097,773        253,118        192,351        

nonelder elderly

nonelder elderly
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income, existence of transfer income, and (adjusted gross) household income to estimate the 

propensity score.  

More specifically, logistic regression models are run with a dependent variable (T) and 

the selected common variables (Z) as independent variables with several variations. First, an 

overall model is estimated with all the selected common variables as independent variables to 

get an overall propensity score. After that, different logistic regression models with respect to 

the included independent variables are constructed for different cells, which are segmented by 

strata variables, to estimate cell specific propensity scores. In order to get a tighter fit in 

matching (with respect to income class, for instance), additional segmentation is done. That is, 

subcells within each cell are constructed and estimations of the propensity score are carried out 

after screening out the subcells where no propensity scores can be estimated. So we need to run 

one overall model, cell specific models, and subcell specific models here. Note that neither X 

nor Y are used throughout the estimation and matching procedure, distinguishing this approach 

from the predictive mean matching algorithm.  

The propensity score is defined as: 

)()|1()( 'βiii zgzZTPze ==== , 

the conditional probability of a record i to belong to a certain group (T = 1) given the covariates 

(Z = z). The estimated propensity score is defined accordingly, 

6
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 The individual propensity scores ê(zi) are the predicted values from the logistic 

regression output for β. However, different subjective weights for each parameter can be used to 

incorporate the subjective importance of the independent variable. This subjective importance of 

common variables is determined according to the researcher’s discretion or the explanatory 

power of the variables. For the subcell cases, however, subjective weights are not critical 

because the variables of interest are already included as strata variables (although more 

elaboration can be added).  

After running each model, all records for each file are sorted by estimated propensity 

scores ê(zi) (in ascending order) and weights size (in descending order). Then identifiers for 
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each record by the level of estimation are assigned for convenience of matching. Under this 

sorting scheme, a record with a larger weight in the donor file will be split up or duplicated and 

matched with multiple records in the recipient file until all of its weight has been used up. Note 

that this is a rank order matching procedure. As we will see below, however, this will not 

exhaustively match all of the records in both files, requiring additional estimation of propensity 

scores by relaxing the restriction of perfect matches by strata variables.  

 

E. Statistical Matching Algorithm 

The matching procedure begins with the separation of the combined file back into donor and 

recipient files according to their original membership. Then matching is performed in an 

iterative and hierarchical process: first, matching is done between records of the donor and 

recipient files by subcell, separately; second, the unmatched subcell leftover records are 

collapsed into the corresponding cells and matching is carried out within each cell separately; 

and third, the unmatched cell leftover records are collapsed and matching is carried out across 

some strata variables or their variants to use up the attached weights for each file. 

An important point is the order of collapsing cells across strata variables after the second 

matching step (at which point, typically almost 90% of the weights are exhausted; see Table 3 

for the breakdown by round for this example). Our strata variables are family type, elderly, race, 

homeownership, and household income, corresponding to the subpopulations of interest to us. 

Thus, we need to select an order to sacrifice the perfect-match requirement on these strata 

variables in order to use up all of the weights and to preserve marginal distributions (the main 

restrictions of constrained matching). 
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Table 3. Weighted Distribution of Matched Records by Matching Round 

 

  

 

 

 

 

 

 

Experimenting with collapsing cells, however, shows that it is almost impossible to set a 

strict order beforehand. Instead, it is better to take an ad hoc approach, comparing the propensity 

scores and attached weights across cells after every matching step to figure out what variable 

should be discarded. That consideration requires another estimation of propensity scores. Three 

additional considerations in this algorithm should be noted here. First, searching for the nearest 

neighbors is done through comparison of forward and backward search results, and splitting 

weights is followed with some buffering for flexibility.5 Second, several records that have 

weights that are too small to be matched with corresponding records are combined as groups 

and then adjusted following their proportion to the within group total.6 Third, a final adjustment 

of the values of Y in the synthetic matched file is performed by comparing them to the values of 

Y in the donor file. This includes readjustment of the minimum or maximum values of Y in the 

synthetic matched file and unmatched or unused records in the donor or recipient files. Usually 

these cases stem from the fact that the attached weights are too small to be used in the matching 

procedure. 

 

                                                 

5 In our case, we regard weight differences of 100 between corresponding donor and recipient records as acceptable 
match.  
6 This procedure provides alternative matched variables with some variations that can be compared with originally 
matched variables, and we can pick one of them at the quality check stage. 

round  Freq. Percent
1 98,225,759 89.87
2 3,827,915 3.5
3 301,461 0.28
4 277,796 0.25
5 1,178,157 1.08
6 2,219,868 2.03
7 1,347,519 1.23
8 638,536 0.58
9 34,745 0.03
10 777,852 0.71
11 105,151 0.1
12 362,696 0.33

Total 109,297,455 100
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4. PROPERTIES OF THE STATISTICAL MATCH 

 

Under the constrained matching scheme, all marginal distributions are supposed to be identical 

before and after matching. Only the joint distributions of variables not jointly observed may be 

different. Following this logic, statistical matching is regarded as successful if the marginal and 

joint empirical distributions of X given Z that are observed in the statistically matched file are 

nearly the same or similar to those of the donor file. This criterion is based on the assumption 

that discrepancies should not be large between two independent random samples drawn from the 

same population. Although there are other proposed tests to check the validity of statistical 

matching, comparing the marginal and joint distribution is the only available test in practice 

(Rässler 2002). 

In this project, the empirical marginal distributions of the imputed variables Y in the 

resulting matched file are compared with their empirical marginal distributions of the donor file 

to evaluate the similarity of both files through the calculation of Lorenz coordinates, Gini 

coefficients, decile values and their ratios. Also the weighted mean and median values for Y by 

each strata variable are computed and compared between the donor and matched files. The Y 

variables in our case are five classes of assets (value of primary and secondary residential 

housing, other nonfinancial assets, liquid assets, other financial assets, and retirement assets), 

two classes of debt (mortgages and home equity lines of credit on Asset 1, and other debt), and 

net worth (the sum of assets minus the sum of debts). Figure 1 shows the ratio of the average 

value in the matched file to the average value in the donor file for each of these variables. Each 

variable has two ratios; the first, “scaled” ratio, reflects the adjustment made in the matching 

procedure for those observations that were dropped due to small weights, while the “unscaled” 

ratio refers to the unadjusted values. In all cases, the “unscaled” ratios are closer to unity, so we 

choose to incorporate these values into the final synthetic file, and for the rest of the discussion 

we will refer to the “unscaled” values only. 

 

 

 



18 

 

Figure 1. Ratio of Imputed to SCF Values, Unscaled and Scaled 

 

 

 

 

 

 

 

 

 

 

Figures 2 through 4 provide comparisons of the net worth variable in the original data set 

(SCF2001) and in the matched data set (IMP1). As we can see, the distribution of net worth in 

the matched data set is very close to that of the original data set. Figure 2 shows the Lorenz 

curves for the two distributions. They are, in fact, too similar for this level of detail to be very 

revealing. Figure 3 shows the distribution of logged net worth for each of eight cells, 

differentiated by race, homeownership, and age. The box plots give us confidence that the 

marginal distributions have been well preserved in the statistical matching process. Finally, 

Figure 4 shows the density functions of logged net worth for the imputed and original data sets. 

Again, they appear to be identical at this level of detail. 
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Figure 2. Lorenz Curve of Imputed and SCF Net Worth 
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Figure 3. Distribution of Net Worth by Race, Home Ownership and Age 
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Figure 4. Distribution of Net Worth in Imputed and SCF Datasets 
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While the preceding analysis sheds some light on the similarities between the imputed 

and original data sets, closer examination of the marginal distributions for all of the variables is 

required for complete confidence in the results. Figure 5 and Tables 4 through 8 detail the 

comparison of the empirical marginal distribution of variables in the matched file to those in the 

donor data set by the strata variables we identified above: race, age, family type, 

homeownership, and income class. Figure 5 summarizes the ratios of the average net worth in 

the imputed data set to the source data set for each category of our strata variables plus 

education. The best results are for the cases of race, age, and homeownership. The family type 

and income class ratios vary a bit more, but are mostly close to unity. In the tables, the 

comparison is of mean and median values of the eight variables we wish to carry over in the 

matching process. 

In Table 4 we can see that the means in the imputed data set are, for the most part, quite 

close to those in the source data set. In some cases, though, we can see that the gap between 

white and nonwhites is understated in the matched data set as compared to the donor data set. 

This phenomenon is most marked in the case of Asset 4 (financial assets), the variable that is in 

fact the most unequally distributed (note that its median value is zero in the SCF). This pattern 

is attributable to the fact that the matching does not perfectly capture the upper tail of the 

distribution of wealth in the SCF (as can be seen in the box-plot comparison of net worth in 

Figure 3). 

Table 5 breaks down the distribution by elderly status. The ratios are within five percent 

of unity for all of the variables, with the exception of the average value of Asset 3 and the 

median value for Debt 1 (mortgages and HELOCs) for nonelders. Table 6 identifies the sources 

of the large differences between the source and imputed data set in the lowest income class as 

Asset 4 and 5. This case reveals an interesting skew in the results: wealth is less unequally 

distributed along the income distribution in the synthetic data set than in the SCF. However, it is 

important not to overstate the significance of this pattern. For those households with less than 

$20,000 income, the average net worth in the synthetic data set is fifteen percent higher than in 

the SCF. However, this amounts to a little under $10,000 in additional wealth (compare this to 

the absolute difference for elder households of $22,000 less wealth on average in the matched 

data set than in the SCF). For the most part, the average values of all the variables are quite 

similar in the matched data set to their corresponding values in the SCF for all income classes. 
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Table 7 shows close correspondence between the imputed and the donor data sets by 

race and homeownership status, with nonwhite renters’ net worth lower and both nonwhite and 

white owners’ net worth larger on average in the synthetic data set than in the original. Table 8 

contains some of the largest examples of divergence in the synthetic data set. White and 

nonwhite married couples and female-headed households both have their net worth inflated in 

the matched data set, on average, while nonwhite, male-headed households have theirs 

understated. The proportions between female-headed and married couple households are well 

preserved (for example, the ratio of nonwhite, female-headed average net worth to married 

couple average net worth is 0.223 in the matched data set, compared to 0.208 in the SCF), while 

the same is not as true for white, male-headed households (the ratio is 0.578 in the matched data 

set, compared to 0.490 in the SCF). 

Figure 5. Ratio of Mean Net Worth in Imputed File to SCF, by Category 
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Table 4. Ratios of Mean and Median Values by Race 

 

 

Table 5. Ratios of Mean and Median Values by Age 

 

 

 

 

 

Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Debt 1 Debt 2 Net Worth
SCF2001 nonwhite 61,310      35,636      14,393      13,944      15,313      26,029      9,676        104,892    
SCF2001 white 141,796    148,254    45,661      125,203    62,547      45,682      14,723      463,056    
ADS2002i nonwhite 63,033      39,494      14,749      15,592      15,473      26,142      9,797        112,402    
ADS2002i white 144,101    153,848    47,585      129,101    63,300      46,098      14,610      477,302    
Ratio nonwhite 102.81% 110.82% 102.47% 111.81% 101.05% 100.44% 101.25% 107.16%

Ratio white 101.63% 103.77% 104.21% 103.11% 101.20% 100.91% 99.23% 103.08%

SCF2001 nonwhite -           -           1,500        -           -           -           1,500        7,730        
SCF2001 white 90,000      -           8,000        150           2,200        -           2,500        104,700    
ADS2002i nonwhite -           -           1,500        -           -           -           1,710        8,200        
ADS2002i white 90,000      -           8,200        200           2,450        -           2,400        107,400    
Ratio nonwhite 100.00% 114.00% 106.08%

Ratio white 100.00% 102.50% 133.33% 111.36% 96.00% 102.58%

Median

Average

Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Debt 1 Debt 2 Net Worth
SCF2001 nonelder 117,767     113,906     32,348       79,077       50,801       48,502       15,542       329,856       

SCF2001 elder 140,948     149,784     60,195       172,266     53,250       13,018       5,982         557,444       

ADS2002i nonelder 119,963     119,800     34,229       81,663       50,714       48,372       15,408       342,590       

ADS2002i elder 134,623     140,472     57,570       168,518     51,320       12,029       5,428         535,312       

Ratio nonelder 102% 105% 106% 103% 100% 100% 99% 104%

Ratio elder 96% 94% 96% 98% 96% 92% 91% 96%

SCF2001 nonelder 70,000       -             4,370         -             1,600         3,300         4,730         51,700         

SCF2001 elder 90,000       -             17,310       -             -             -             -             150,000       

ADS2002i nonelder 70,000       -             4,500         -             1,520         2,800         4,500         51,900         

ADS2002i elder 90,000       -             16,500       -             -             -             -             143,800       

Ratio nonelder 100% 103% 95% 85% 95% 100%

Ratio elder 100% 95% 96%

Average

Median
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Table 6. Ratios of Mean and Median Values by Household Income Class 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Debt 1 Debt 2 Net Worth
lt $20K 42,572        12,712        9,380          9,291          4,992          6,795          4,093        68,059          

$20K-$50K 75,674        27,827        22,378        37,510        17,880        21,140        8,838        151,293        

$50-$75K 121,290      47,237        33,321        57,237        45,549        45,618        13,621      245,396        

$75K-$100K 165,834      87,097        40,765        73,277        69,161        74,550        18,472      343,112        

gt $100K 352,504      655,814      132,554      474,714      210,209      122,218      38,320      1,665,257      

lt $20K 45,980        13,335        10,131        12,914        6,239          6,525          4,383        77,936          

$20K-$50K 75,688        26,675        22,198        37,585        17,612        21,213        8,582        149,962        

$50-$75K 115,158      54,510        30,972        54,577        44,079        43,257        13,386      242,652        

$75K-$100K 161,385      114,291      40,945        77,182        63,575        67,493        17,812      372,074        

gt $100K 329,272      607,901      130,018      445,033      193,585      115,483      34,577      1,555,749      

lt $20K 108% 105% 108% 139% 125% 96% 107% 115%

$20K-$50K 100% 96% 99% 100% 99% 100% 97% 99%

$50-$75K 95% 115% 93% 95% 97% 95% 98% 99%

$75K-$100K 97% 131% 100% 105% 92% 91% 96% 108%

gt $100K 93% 93% 98% 94% 92% 94% 90% 93%

lt $20K -              -              750             -              -              -              -            7,350            

$20K-$50K 50,000        -              3,900          -              -              -              2,500        37,880          

$50-$75K 98,000        -              8,800          500             10,700        28,000        6,700        97,500          

$75K-$100K 131,000      -              14,000        1,300          28,000        69,000        10,110      186,430        

gt $100K 245,000      30,000        35,000        30,000        80,000        95,000        7,600        503,300        

lt $20K -              -              860             -              -              -              -            10,660          

$20K-$50K 50,000        -              3,840          -              -              -              2,100        37,880          

$50-$75K 90,000        -              7,600          300             8,500          19,000        6,400        87,000          

$75K-$100K 130,000      -              11,500        1,000          22,000        57,000        8,500        168,880        

gt $100K 225,000      15,000        32,500        22,700        67,000        85,000        6,400        447,360        

lt $20K 115% 145%

$20K-$50K 100% 98% 84% 100%

$50-$75K 92% 86% 60% 79% 68% 96% 89%

$75K-$100K 99% 82% 77% 79% 83% 84% 91%

gt $100K 92% 50% 93% 76% 84% 89% 84% 89%

SCF2001

ADS2001i

Ratio

Average

Median

SCF2001

ADS2001i

Ratio
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Table 7. Ratios of Mean and Median Values by Race and Homeownership 

 

 

 

 

 

 

Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Debt 1 Debt 2 Net Worth
nonwhite renter 0 4361 5452 6321 3662 0 5325 14473
nonwhite owner 130320 70839 24458 22524 28427 55327 14574 206668
white renter 0 27897 15296 24702 12316 0 11521 68690
white owner 191290 190265 56260 160283 80080 61627 15841 600710
nonwhite renter 0 3839 5580 6138 3656 0 5675 13539
nonwhite owner 127884 76177 24183 25317 27631 53038 14038 214117
white renter 0 27793 15308 23914 12451 0 11184 68577
white owner 192935 196567 58523 164747 80533 61720 15771 615813

nonwhite renter #DIV/0! 92% 106% 96% 102% #DIV/0! 101% 97%
nonwhite owner 102% 119% 104% 175% 108% 94% 100% 119%
white renter #DIV/0! 105% 95% 98% 96% #DIV/0! 103% 100%
white owner 99% 103% 97% 99% 100% 100% 98% 100%

Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Debt 1 Debt 2 Net Worth
nonwhite renter 0 0 300 0 0 0 400 0
nonwhite owner 90000 0 4700 0 1200 40000 5000 67460
white renter 0 0 1580 0 0 0 2300 1000
white owner 130000 0 13350 1000 10000 32000 2680 176200
nonwhite renter 0 0 310 0 0 0 590 0
nonwhite owner 90000 0 4400 0 600 35000 5000 65000
white renter 0 0 1500 0 0 0 2100 1100
white owner 130000 0 13800 1100 10000 32000 2500 178750

nonwhite renter #DIV/0! #DIV/0! 100% #DIV/0! #DIV/0! #DIV/0! 113% #DIV/0!
nonwhite owner 100% #DIV/0! 98% #DIV/0! 50% 84% 85% 100%
white renter #DIV/0! #DIV/0! 97% #DIV/0! #DIV/0! #DIV/0! 98% 106%
white owner 98% #DIV/0! 100% 100% 95% 100% 89% 99%

SCF2001

ADS2002i

Ratio

Average

Median

SCF2001

ADS2002i

Ratio
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Table 8. Ratios of Mean and Median Values by Race and Family Type 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In summary, this application of statistical matching has resulted in a synthetic data set 

that preserves very well the marginal empirical distribution of the wealth variables in the donor 

data set. Some variation is observed, due for the most part to differences in the sample frames 

between the two data sets. 

 

Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Debt 1 Debt 2 Net Worth
nonwhite MC 92217 63222 20217 17431 26129 39334 12398 167484
nonwhite FH 27735 5975 8156 6819 4643 12343 6230 34753
nonwhite MH 43885 19191 10852 21730 6061 16283 9569 75867
white MC 178753 201047 55347 155917 84197 60414 17948 596898
white FH 75074 34046 26393 55478 19521 17509 7966 185037
white MH 78473 88403 31950 95694 31831 22991 10711 292650
nonwhite MC 95890 66867 20463 20349 26405 40843 12391 176741
nonwhite FH 29079 6649 8423 8687 4778 11899 6337 39380
nonwhite MH 36886 26812 11044 15777 5572 12548 9291 74254
white MC 184109 211144 59166 164399 87941 63931 18254 624574
white FH 85506 41180 28814 61758 24395 19353 7952 214348
white MH 91717 125389 35354 108221 35601 23766 11976 361007

nonwhite MC 107% 104% 104% 163% 108% 101% 105% 113%
nonwhite FH 114% 322% 110% 169% 128% 102% 101% 169%
nonwhite MH 86% 129% 112% 121% 121% 70% 85% 117%
white MC 102% 105% 98% 102% 105% 106% 103% 103%
white FH 110% 178% 112% 113% 121% 96% 99% 126%
white MH 107% 98% 101% 95% 104% 117% 104% 99%

Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Debt 1 Debt 2 Net Worth
nonwhite MC 50000 0 2400 0 0 0 2900 25200
nonwhite FH 0 0 650 0 0 0 600 500
nonwhite MH 0 0 1800 0 0 0 1190 5130
white MC 120000 0 11500 800 10000 23000 4600 153080
white FH 42000 0 3700 0 0 0 150 52300
white MH 28000 0 4000 0 0 0 1800 52000
nonwhite MC 60000 0 2500 0 0 0 3400 31550
nonwhite FH 0 0 600 0 0 0 750 400
nonwhite MH 0 0 1500 0 0 0 1450 3750
white MC 123000 0 12120 1100 11000 30000 5000 160550
white FH 53000 0 4500 0 0 0 100 63110
white MH 28000 0 4500 0 0 0 1600 59500

nonwhite MC 120% #DIV/0! 106% #DIV/0! #DIV/0! #DIV/0! 100% 109%
nonwhite FH #DIV/0! #DIV/0! 110% #DIV/0! #DIV/0! #DIV/0! 100% 110%
nonwhite MH #DIV/0! #DIV/0! 59% #DIV/0! #DIV/0! #DIV/0! 63% 15%
white MC 102% #DIV/0! 101% 125% 120% 130% 113% 105%
white FH 111% #DIV/0! 121% #DIV/0! #DIV/0! #DIV/0! 44% 115%
white MH 100% #DIV/0! 100% #DIV/0! #DIV/0! #DIV/0! 100% 114%

SCF2001

ADS2002i

Ratio

Average

Median

SCF2001

ADS2002i

Ratio
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5. CONCLUSIONS 

 

Statistical matching is an extremely attractive procedure for researchers. The data required to 

answer even basic questions is often not available in one survey data set. Thus, the ability to 

combine sets of data can be seductive. However, care must be taken whenever two sets of data 

are combined in this manner. If the assumption of conditional independence is violated, the 

resulting analysis will be compromised, because the joint distribution of the variables in the 

synthetic data set will be substantially different from that of the target population.  

In cases where the assumption of conditional independence seems appropriate, as in our 

example, matching can proceed with the confidence that the synthetic data set produced 

adequately captures the relationship between the variables of interest that are not jointly 

observed in any of the previously available data sets. An important qualification is that this is 

true only at the level at which the less representative of the two datasets is representative. In 

other words, if one of the data sets is representative at the state level and the other is 

representative at the national level, the resulting synthetic dataset can only claim to be nationally 

representative. 

Checking the quality of the match is essential, of course, but if there exists no third 

source of data against which to check the validity of the synthetic data set, all that is available in 

terms of quality control is comparison of the conditional distributions of the donated variables in 

the donor and synthetic data sets. This is a necessary but insufficient indicator of the quality of 

the match. However, if the Conditional Independence Assumption is met, we can be confident 

that the synthetic data set captures the distribution of the donated variables adequately. 

A problem that has yet to be adequately addressed is posed by the fact of having to use 

weighted observations (in this type of application). Generally speaking, if the weights on some 

observations in the donor or recipient data set are very much smaller than the typical weight in 

the other data set (as in the case of the SCF, in which high-wealth households are oversampled 

in order to be adequately represented in the completed survey), what can be done to best 

incorporate this information into the resulting synthetic data set? The effect this problem has is 

illustrated by the box plots in Figure 3. The upper tail of the wealth distribution is attenuated in 

the process of matching. This may or may not be a severe problem, depending on the 
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application and research purpose. However, if we have reason to believe that significant 

information about wealth inequality is being discarded in the process of statistical matching, 

then this problem deserves further attention.
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