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ABSTRACT  
 
The process of constructing impulse-response functions (IRFs) and forecast-error variance 

decompositions (FEVDs) for a structural vector autoregression (SVAR) usually involves a 

factorization of an estimate of the error-term variance-covariance matrix V. Examining 

residuals from a monetary VAR, this paper finds evidence suggesting that all of the variances 

in V are infinite. Specifically, this study estimates alpha-stable distributions for the reduced-

form error terms. The ML estimates of the residuals’ characteristic exponents α range from 

1.5504 to 1.7734, with the Gaussian case lying outside 95 percent asymptotic confidence 

intervals for all six equations of the VAR. Variance-stabilized P-P plots show that the 

estimated distributions fit the residuals well. Results for subsamples are varied, while 

GARCH(1,1) filtering yields standardized shocks that are also all likely to be non-Gaussian 

alpha stable. When one or more error terms have infinite variance, V cannot be factored. 

Moreover, by Proposition 1, the reduced-form DGP cannot be transformed, using the required 

nonsingular matrix, into an appropriate system of structural equations with orthogonal, or even 

finite-variance, shocks. This result holds with arbitrary sets of identifying restrictions, 

including even the null set. Hence, with one or more infinite-variance error terms, structural 

interpretation of the reduced-form VAR within the standard SVAR model is impossible. 

 

Keywords: Structural Vector Autoregression; VAR; Lévy-stable Distribution; Infinite 

Variance; Monetary Policy Shocks; Heavy-tailed Error Terms; Factorization; Impulse 

Response Function; Transformability Problem 
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I. INTRODUCTION 

 

Since the seminal article on structural vector autoregressions (SVARs) by Sims (1980), 

macroeconomists have used these econometric models to quantify the economic effects of 

monetary-policy shocks. SVARs are now used in a wide variety of applications, ranging from 

studies of the effects of fiscal- and monetary-policy shocks to tests of dynamic, stochastic 

general equilibrium models. This paper seeks to find out whether one or more innovations (or 

equivalently, shocks or error terms) in one illustrative monetary SVAR has infinite 

unconditional variance, or formally (Feller 1971: 133–134): 

∞=≡ ∫
∞

∞−
)(22 εεσε idF

it  

where εit, , 1, 2, 3,….T, are the error terms in the equation for some variable i in the reduced-

form of a VAR data-generating process (DGP) and Fi(ε) is their unconditional distribution. 

Infinite-variance error terms would obviously complicate estimation, testing, and inference in 

any regression equation. This paper focuses on a potential problem that arises specifically in 

SVAR analysis because of the requirement that the reduced-form DGP be transformable into a 

structural form. Usually, an estimate of the matrix V = E(εtεt′) where εt = (ε1t, ε2t, ε3t,…εit, 

…..εkt)′ is needed to achieve this transformation. The nonexistence of V implies the 

nonexistence of the structural representation, as shown in Proposition 1 below. In this paper, 

evidence is presented from a monetary SVAR supporting the hypothesis that for one or more 

equations i, the error term εit has an alpha-stable, infinite-variance distribution Fi.   

The rest of the paper is organized as follows. Section II provides background on alpha-

stable distributions. Section III presents a standard SVAR model and argues that infinite-

variance reduced-form shocks preclude most standard structural interpretations of VARs. 

Section IV discusses the literature on alpha-stable distributions, macro SVARs, and the 

connections between them. Section V is a discussion of this paper’s monetary SVAR, 

including the data, specification, results, and residuals. Section VI reports estimates of the 

characteristic exponent α of the error term in each equation of the VAR for both the full sample 

and two subsamples, and assesses the fit of the estimated alpha-stable distributions. Then, 
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attempting to measure the characteristic exponents independently of the influence of time-

varying dispersion, the paper reports results in section VII for GARCH-filtered shocks. Section 

VIII draws together the main findings of the paper and suggests some implications. 

 

II. ALPHA-STABLE DISTRIBUTIONS  

 

The many special statistical properties of alpha-stable random variables offer some theoretical 

reasons for the use of alpha-stable error terms in an econometric model (Bartels 1977) and 

suggest why alpha-stable distributions have been found in many kinds of scientific and 

financial data. In addition to those below, more are proven and discussed in references on the 

subject, such as Nolan (forthcoming) and Samorodnitsky and Taqqu (1994). 

 Stable random variables are the only possible limiting distributions for sums of i.i.d. 

shocks. That is, a random variable X has a stable distribution if it has a domain of attraction, 

i.e., if there is a sequence of i.i.d. random variables Y1, Y2,…. and sequences of positive 

numbers {dn} and real numbers {an}, such that  

 

Xa
d

YYY d

n
n

n ⇒+
+++ ...21  

where the arrow symbol means “converges in distribution to” as the sample size n → ∞ 

(Samorodnitsky and Taqqu 1994: 5). If the Y’s have a finite variance, X is normally 

distributed.  

Furthermore, there is an equivalent definition: a random variable X has a stable 

distribution if for each n greater than or equal to 2, the distribution of a sum of n independent 

copies of X, denoted X1, X2,….Xn, is the same as that of an affine transformation of X 

involving a positive scalar Cn and a scalar Dn: 

nn

d

n DXCXXX +=+++ ...21   

(Samorodnitsky and Taqqu 1994: 3). It turns out that  

 

α/1nCn =  
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where α is a parameter known as the characteristic exponent or stable index of the distribution, 

which plays a major role in this paper. Alpha takes on values in the interval (0, 2], with lower 

α’s indicating distributions with higher peaks and thicker tails. Along with α, stable 

distributions have three other parameters: β for skew, γ for scale, and δ for location. A normal 

distribution is a stable distribution with α = 2 and β = 0. Figure 1 shows the standard normal 

distribution and a symmetric, stable distribution of the same scale with α = 1.7. (All figures and 

tables are at end of this paper.) 

Crucially, when α < 2, the non-Gaussian case, the variance of an alpha-stable random 

variable equals infinity. When a VAR error term has a distribution with infinite variance, the 

consequences for SVAR analysis are serious indeed and go far beyond those caused by the 

presence of finite-variance, thick-tailed residuals.   

 

III. THE NONEXISTENCE OF STRUCTURAL REPRESENTATIONS OF VARs 

WITH ONE OR MORE INFINITE-VARIANCE ERROR TERMS 

 

This paper examines the implications for SVARs of infinite-variance innovations.1 To see 

these implications, recall that the structural form of a VAR model of order p is 

 

tptpttt YBYBYBAY η++++= −−− ....2211       (1) 

 

where A and the Bis are k-by-k matrices of parameters, with A nonsingular; the Yts, t = 1, 2, 

3….., T, are k-component vectors of economic variables at time t; and ηt is a k-component 

vector of structural shocks. Presample values Y-p, Y-(p-1), . . ., Y-1 are given.  

 SVAR uses a set of distributional assumptions about the structural shock vector like the 

following: 
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1 Hamilton (1994), Lütkepohl (2006), and Watson (1994) provide standard treatments of SVARs. 
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where I is the k-by-k identity matrix.2 An estimate of the structural form (1) is indispensible for 

much of the work that is done with VARs. This paper focuses on cases in which the structural 

form (1) does not exist, in the sense that the distribution of the error terms in the reduced form 

below implies that the set of parameters in (1) does not exist, regardless of any further 

assumptions that are made, as made clear below. The parameters and the structural shock 

vectors ηt, t = 1, 2, 3,….,T, of (1) are usually identified from the reduced form3 

 

tptpttt YCYCYCY ε++++= −−− ....2211       (2) 

 

where  
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          (3) 

 

The covariance matrix of εt is 

 

')''()'( 1111 −−−− === AAAAEEV tttt ηηεε        (4) 

 

This leads to a relationship between the structural shocks and reduced-form error terms:  

tt Aεη =  

To find the needed parameter and shock estimates, one first estimates the reduced form 

(2).4 The residuals εt* from the estimated system are consistent estimates of the shocks εt, but 

the most important uses of SVARs require that we identify the ηt. To do this, one first obtains 

an estimate V* of the covariance matrix V. Then, under the identifying assumption that A is 

                                                 
2 Many studies make more specific distributional assumptions about the disturbance term ηt, especially for 
maximum likelihood estimation (Hamilton 1994: 291–302). Also, E(ηtηt′) is sometimes assumed to be an 
arbitrary diagonal matrix, rather than the identity matrix. 
3 Stability requires that the inverse characteristic roots of the system (2) lie outside the complex unit circle. 
4 Given the assumptions above, equation-by-equation OLS estimation (LS) yields a consistent estimate of the 
regression parameters. LS is identical to the seemingly unrelated regressions (SUR) estimator in this case, so it is 
also the efficient generalized least squares (GLS) estimator. See Davidson and MacKinnon (2004: especially 595–
597) or Hamilton (1994: 291–350), and the references therein for more details. Bayesian estimators are often used 
as well (for example, see Leeper, Sims, and Zha [1996]). 
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lower triangular, that matrix can be identified by decomposing V* into the product of a lower 

triangular matrix A*-1 and its transpose A*-1' (the Cholesky factorization) and inverting. 

Estimates of the ηt can then be identified from the relationship  

 

* * *t tAη ε=  

  

Subsequent to Sims’s (1980) article, macroeconomists developed patterns of zero 

restrictions that do not result in a triangular A matrix (Bernanke 1986; Blanchard and Watson 

1986; and Sims 1986), as well as long-run restrictions (Blanchard and Quah 1989). All of these 

SVAR identification schemes, and most others developed subsequent to Sims (1980), involve 

factorizations of V similar to (4). They are usually estimated by factoring V*. (An 

instrumental-variables estimator for SVARs with long-run restrictions is presented in Shapiro 

and Watson [1989]. Proposition 1 below applies to this case as well.)  

The two main uses of the structural estimates are: 

 

1. Impulse response functions (IRFs) derived from the structural moving average 

representation  

 

.....13121 +++= −− tttt DDDY ηηη  

 

which measure the effects over time of a one-unit or one-standard-deviation shock to one 

component of ηt, and 

 

2. Forecast error variance decompositions (FEVDs), which reveal the proportion of the 

variation of each variable in Yt that is due to variation in each element of ηt.  

Through the use of appropriate identifying restrictions, the structural shocks ηit* can be 

interpreted as estimates of monetary policy shocks, money demand shocks, technology shocks, 

and the like. The εit* are not as useful, because, being correlated, they do not lend themselves 

as easily to structural interpretations. 

When the covariance matrix V has one or more infinite diagonal components, the 

decomposition V = A-1A-1' does not exist, and hence the structural form (1) is not an 
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appropriate model.5 All elements of the estimate V* will of course be finite, but the term 

“estimate” is not appropriate when V does not exist. Hence, if the distribution of any 

component of εt is stable with α <  2, implying infinite variance, there is no meaningful 

estimate of the structural shocks and coefficients in the structural form (1)6, making IR and 

FEVD analysis impossible.  

A more rigorous statement of the existence problem posed for SVAR by infinite-

variance innovations might be of help. One reason is that the critique proposed here might 

seem only to call for different estimators of A and the rest of the structural DGP that do not 

make use of a factorization of V* (e.g., Shapiro and Watson 1989). In fact, though, there exists 

no nonsingular A that transforms the innovations εit into orthogonal shocks ηit when one or 

more equations i has innovations with infinite variance, σi
2. This is shown in the following 

proposition.  

PROPOSITION 1: Let εt and  ηt be two random k-element vectors  and let A be a k-by-

k nonsingular matrix of real numbers, with ηt = Aεt. If one or more of the elements of εt has 

infinite variance, then  

 

IE tt ≠)'( ηη  

 

The proposition still holds if the identity matrix I above is replaced by any other finite 

k-by-k matrix W. 

Proof: We have  

 

εt = A-1ηt.        (5)  

 

We shall assume that at least one element of εt has infinite variance and that, as above, E(ηtηt′) 

= I (or = W), and proceed until we find a contradiction. Without loss of generality, assume 

that the first element of εt has infinite variance. The first equation in the system (5) can then be 

written 

 
                                                 
5 Also, if more than one innovation has infinite variance, some off-diagonal entries in the variance-covariance 
matrix will be infinite. 
6 Another issue is the efficient estimation of the reduced-form VAR coefficients when some error variances are 
infinite. This point seems moot in the context of standard SVAR, for the reasons given in this section.  
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where the a1r are the elements of the top row of A-1 and the ηjt are the elements of ηt. Then, the 

variance of ε1t is 
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Since by assumption the left side of (6) is infinite, at least one term on the right side must be 

infinite. But since E(ηtηt′) = I, the right-hand side of (6) equals k. This is a contradiction. The 

weaker assumption E(ηtηt′)= W, where W is an arbitrary finite matrix, obviously implies a 

similar contradiction. Q.E.D. 

  

Thus, when at least one innovation εit has infinite variance, no suitable transformation 

A exists that can generate structural shocks ηit satisfying the crucial identifying condition of 

orthogonality, or for that matter having any covariance matrix called for by a structural model. 

In other words, when the reduced-form model shown in (2) has one or more equations with 

infinite-variance shocks, there exists no corresponding structural representation like (1). It is a 

simple matter to show that this transformability problem arises in a wide range of standard 

SVAR models, such as the A, B, and AB models presented in Lütkekpohl (2006: 358–368), 

when for one or more i, the variance σi
2 of εit in (2) is infinite.  

 

IV. REVIEW OF THE LITERATURE 

 

Alpha-stable distributions are generally attributed to work early in the twentieth century by 

Paul Lévy. A classic source on the topic is Feller (1971); Nolan (forthcoming) and 

Samorodnitsky and Taqqu (1994) are more recent monographs. The use of alpha-stable 

distributions for economic variables began with Mandelbrot’s (1963) analysis of securities 

price changes. Later work by Fama (1963, 1965a, 1965b) and Mandelbrot (1967) found many 

characteristic exponents below 2 in financial-market data. Blattberg and Gonedes (1974) 

argued that student’s-t distributions better fit some financial series, while Clark (1973) 

presented one of the first arguments that a heteroskedastic, finite-variance model could better 
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account for many thick-tailed unconditional distributions like those observed by Mandelbrot 

and Fama.  

Granger and Orr (1972) analyzed the implications of alpha-stable distributions for time 

series analysis. Rachev, Kim, and Mittnik (1997) and DasGupta and Mishra (2004) reviewed 

findings on the econometrics of non-Gaussian stable distributions. Bartels (1977) makes an 

interesting case for the use of stable distributions in regression analysis. Andrews, Calder, and 

Davis (2009), Bhansali (1993), Cline (1989), Hannan and Kanter (1977), Kanter and Steiger 

(1974), and Yohai and Maronna (1977) discuss the estimation of single-equation regressions 

and autoregressions with alpha-stable shocks. Mirowski (1990) discussed the history of these 

distributions in economics.  

The SVAR literature in macroeconomics and time series econometrics is vast, with 

thousands of studies employing the technique since 1980. Few if any have made use of alpha-

stable distributional assumptions. Two key references on SVAR modeling and estimation are 

Hamilton (1994) and Lütkepohl (2006). Christiano, Eichenbaum, and Evans (1999) give an 

account of what had been learned by late last century from monetary SVARs. Some monetary 

SVARs using variables, specifications, and estimators similar to the one in this paper include 

Bernanke and Mihov (1998b), Christiano, Eichenbaum, and Evans (1996), and Strongin 

(1995). These articles are discussed by Leeper, Sims, and Zha (1996: 29–39). Galí (1999) 

studies technology shocks using SVAR.  

This paper is not meant as an analysis or discussion of any particular study or article. 

Rather, the example VAR in this paper is meant to be broadly representative of a large swath 

of the monetary SVAR literature.  

Many recent articles have modeled thick-tailed behavior of monetary VAR shocks with 

many forms of time-varying variances, including stochastic volatility, normal mixtures, and 

Markov regime-switching models. Some articles in this literature are Cogley and Sargent 

(2005), Gambetti, Pappa, and Canova (2008), Primiceri (2005), Lanne and Lutkepohl (2008 

and 2010), Sims, Waggoner, and Zha (2008), and Sims and Zha (2006). Some of these 

approaches do not yield the standard, time-invariant IRFs and FEVDs that are so crucial to 

standard SVAR analysis. Also, modeling heteroskedasticity often markedly increases the 

number of free parameters to be estimated. 

In a statistics journal, J.B. Hill (2006: 3) mentions the possibility that VAR shocks 

could have infinite variance, leading to problems with orthogonalization for SVAR analysis. 



 

 
10

His article develops alternative projections and decompositions in a large class of non-L2 

spaces and characterizes the best predictors in such settings, allowing him to extend work by 

Gallant, Rossi, and Tauchen (1993) and Koop, Pesaran, and Potter (1996) on nonlinear IRFs to 

situations with possibly infinite variance. Some of the spaces studied by Hill contain stable, 

non-Gaussian random variables. Hill’s article does not introduce any SVAR applications.  

Apparently, other than Hill, few have considered the possibility that VAR residuals or 

shocks of any kind might have infinite-variance distributions. Zarepour and Roknossadati 

(2008) may be the only prior study of a VAR model with stable, non-Gaussian shocks, and 

they restrict their attention to a VAR with unit roots and with one lag of the dependent variable 

serving as the sole regressor in each equation.  

Standard presentations of SVAR assume a finite covariance matrix V, but despite some 

reports of thick tails in the literature, it is probable that no previous study has examined in 

detail the evidence for and implications of infinite variance in the error terms of an SVAR.7 

This paper does so by fitting alpha-stable distributions to reduced-form VAR residuals in raw 

and GARCH-filtered form, and reporting estimated stable-distribution parameters, along with 

variance-stabilized P-P plots.  

Some references to the literature on methods of estimating the characteristic exponent α 

are provided at the beginning of section VI. 

 

V. THE RESERVES VAR: DATA, MODEL, ESTIMATION, RESULTS, AND 

RESIDUALS 

 

The data are monthly and span the period January 1959–November 2007. The VAR’s variables 

are industrial production (IP), the consumer price index for all urban consumers (CPI), the 

crude materials producer price index (PPI), the federal funds rate (FFR), and the Federal 

Reserve’s nonborrowed reserves (NBR) and adjusted total reserves (TR) series. All variables 

other than FFR were used in their officially deseasonalized forms and were log-transformed.8  

A constant and 12 lags of each variable appear on the right-hand side of each equation. (This 

lag length was selected by starting with 12 lags of each variable in all equations and testing 

                                                 
7 An early, much shorter version of the present study was Hannsgen (2008).  
8 The NBR variable, described below, fell to negative levels in January 2008, making the log transformation 
impossible. The decline began with a sharp fall in the previous month. A somewhat arbitrary decision was made 
to truncate the sample so as to omit the entire episode, rather than including one part of it but not another.     
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down with an LR test. The AIC and FPE selected 3 lags. As reported in footnote 17, results 

from a 3-lag specification with the same data were not greatly different.)  

The coefficients of the reduced form (2) and the corresponding shock vectors εt, t = 1, 

2, 3,….,T, are estimated using equation-by-equation ordinary least squares (LS). In addition to 

its use in many articles in the SVAR literature, two reasons could be used to justify this study’s 

reliance on the LS estimator: 1) under a null hypothesis9 of i.i.d. normal shocks, LS is the ML 

estimator for the VAR, and can be combined with the ML estimator for univariate alpha-stable 

distributions to provide a two-step ML point estimate of the characteristic exponent of εit, for 

the shock in each equation i;10 or 2) under a weaker null of some form of standard white-noise 

shocks (Lütkepohl 2006: 73–75), the LS estimates are still consistent and qualify as the 

efficient GLS estimates.  

These considerations led to the choice of an LS estimate. This section presents a few 

results from the model, in order to demonstrate that they are fairly typical. Figure 2 (see back) 

shows IRFs with a 48-month horizon for a positive, one-standard-deviation structural shock to 

FFR.11 Shocks of this type are often interpreted as monetary-policy shocks. The ordering of the 

variables in the Cholesky decomposition was IP, CPI, PPI, FFR, NBR, TR. Monte Carlo two–

standard error bands are shown in the figure.12 

The IRs are mostly typical for a monetary SVAR. The response of IP (industrial 

production) to a contractionary FFR (federal funds rate) shock is long-lived, negative, and 

statistically significant. There appears to be a “price puzzle,” which has been observed in many 

IRFs of this type (Sims 1992): CPI actually rises for a prolonged period after a positive FFR 

shock.  

The primary empirical concern of this paper is the distribution of the innovations in the 

reduced-form VAR. The estimated shocks εit
LS for each equation are plotted in figure 3, along 

with dotted lines at plus and minus one standard error from the mean. Histograms appear in 

figure 4, with normal distributions superimposed. Some estimation results and diagnostics 

appear in table 1. These should be viewed as potentially misleading because, under any 

alternative hypothesis involving infinite variance, unconditional moments of order greater than 
                                                 
9 The null hypotheses referred to in this paragraph are meant to be thought of as ways of interpreting the results 
below, rather than as hypotheses in the formal sense of the term. 
10 Estimation of a 6-dimensional multivariate stable distribution is probably infeasible at this time.  
11 The standard deviation was adjusted for degrees of freedom. 
12 The error bands were calculated based on 3,000 replications in the impulse response bootstrap routine in Eviews 
5.1. 



 

 
12

2 also do not exist, and the corresponding sample moments do not converge to standard 

distributions.  

 The histograms in figures 4–9 give the impression that a non-Gaussian distribution of 

some type is likely. Table 1 shows that each set of residuals has excess kurtosis (with estimates 

ranging from 4.46 for IP to 123.60 for TR), and some are very skewed. Jarque-Bera tests for all 

six residuals easily reject the null of normality at a 1-percent significance level. A weaker null 

hypothesis of standard white-noise shocks is then preferred. Each residual tends to have weak 

sample autocorrelations.  

Figure 3 gives the impression that the dispersion of some of the shocks changes over 

time. Mandelbrot (1963) observed such behavior in many financial time series, and it is 

certainly consistent with infinite-variance shocks. For example, deVries (1991), Haas, Mittnik, 

Paolella, and Steude (2005), and Liu and Brorsen (1995) present heteroskedastic models with 

stable, non-Gaussian shocks. On the other hand, clusters of high or low volatility are also 

consistent with an ARCH or generalized ARCH (GARCH) process. Such processes usually 

have thick-tailed unconditional distributions but finite variances (Engle 1982: 992). Therefore, 

a model with ARCH or GARCH shocks is another important alternative hypothesis to be used 

with an i.i.d., finite-variance null. Tables 2 and 3 give the results of Engle (1982) LM tests for 

ARCH, first using three lags of the squared residuals in the test equation, then 12 lags. LM test 

statistics (third column) above the .05 critical value, which are marked with asterisks, reject the 

null of no (G)ARCH effects. 

While the null is rejected for all six residuals for the first specification, and for four of 

the residuals in the second, the very small R2s indicate that finely attuned tests are detecting 

fairly weak effects. Moreover, under an alternative hypothesis of stable, non-Gaussian shocks, 

the Engle test statistic does not admit of a clear interpretation  

As discussed in section IV, many articles have investigated heteroskedasticity in 

monetary SVARs. Some of these break their data set into subsamples. Bernanke and Mihov 

(1998a: 163) find no evidence of a structural break in the policy block of their structural 

disturbances variance-covariance matrix in the periods 1966:1–1979:9 and 1988:4–1996:4.13 

Tables 4 and 5 show the results of Engle LM tests for the first of these subperiods and for 

                                                 
13 These subsample estimates used presample data from 1965:1 to 1965:12 and 1987:4 to 1988:3. 
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1988:4 to the end of the sample, which were performed after re-estimating the model for the 

relevant subperiods.14 

For the earlier subperiod, one or both of the two tests rejects the null of no (G)ARCH in 

the innovations in the CPI, PPI, and FFR equations. Tables 6 and 7 report that for the later 

subperiod, the CPI, FFR, NBR, and TR residuals appear to be free of (G)ARCH effects no 

matter which of the two lag lengths is used in the test equation. These findings will favor an 

interpretation of any statistical findings of characteristic exponents α < 2 for the homoskedastic 

equation-subperiod combinations as evidence of i.i.d., infinite-variance shocks rather than 

heteroskedastic shock processes.  

 

VI. DO A VAR’S REDUCED-FORM SHOCKS HAVE INFINITE VARIANCES?: 

ESTIMATED CHARACTERISTIC EXPONENTS α 

 

The Proposition in Section III establishes that we cannot orthogonalize the innovations in a 

standard VAR model when at least one of them has infinite variance. This section investigates 

the estimated shocks from the VAR described in section V above to see if they suffer from this 

problem. The tests below force us to limit our attention to an alternative hypothesis of one or 

more stable, non-Gaussian distributions, though evidence of goodness-of-fit for our estimated 

distributions is also presented. 

 Akgiray and Lamoureux (1989), Garcia, Renault, and Veredas (2006), Kogon and 

Williams (1998), and Lombardi and Calzolari (2008) discuss the relative merits of some 

methods for estimating stable parameters. According to many studies of tail-index estimators, 

they are often very inaccurate as estimators of alpha-stable characteristic exponents when α 

>1.5, at least with sample sizes of less than perhaps 10,000 (Fofack and Nolan 1999; 

McCulloch 1997; and Weron 2001). DuMouchel (1973) shows that except for some 

“exceptional parameter values,” the maximum likelihood (ML) estimates of α, β, γ, and δ are 

consistent and 

 

)ˆ,ˆ,ˆ,ˆ(2/1 δδγγββαα −−−−n  

 

                                                 
14 Both the 1966:1–1979:9 and 1988:4–2007:11 subsample estimates marginally violated the stability VAR 
condition. 
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has a limiting normal distribution with mean (0, 0, 0, 0) and covariance matrix I-1, where I is 

the Fisher information matrix, and the parameters with circumflexes are the estimates. 

Here, we begin with the estimation and diagnostics approach suggested by Nolan (1999 

and 2001). Three estimates of the stable parameters α, β, γ, and δ were computed: the quantile 

method of McCulloch (1986), the characteristic function regression method of Koutrouvelis 

(1980) and Kogon and Williams (1998), and the ML estimate (DuMouchel 1973; Nolan 

2001).15 Table 8 reports estimates of the characteristic exponents (α) for the innovations in 

each equation of the reduced-form VAR.16   

The last column of table 8 shows the estimates, and, in parentheses, approximately 1.96 

times the asymptotic standard error for the ML estimates. The results are fairly similar across 

estimators for each set of residuals. In all cases, the normal case (α = 2) falls outside of a 95-

percent, two-sided confidence interval, implying infinite variance. Results for a three-lag 

specification were similar.1718 

One note of caution is that for α close to the Gaussian value of 2, the asymptotic normal 

distribution of the ML estimate of α is not a good approximation, with the likelihood function 

falling more steeply to the right of the estimate than to the left for relatively small samples 

(DuMouchel 1983: 1021). Also, asymptotic standard errors are not available when α = 2, due 

to violations of the regularity conditions required for the use of standard asymptotic 

distribution theory (DuMouchel 1983: 1021). Finally, these confidence intervals for α do not 

take into account discrepancies between the error terms εit and the corresponding least-squares 

residuals εit
LS, i = 1, 2, 3, 4, 5, 6 and t = 1, 2, 3,…., T.19 

The next question is whether the distributions are stable at all. Nolan notes that “As 

with any other family of distributions, it is not possible to prove that a given data set is stable” 
                                                 
15 All three estimates were computed using the STABLE program, version 3.14.02, developed by John Nolan of 
American University and available online at academic2.american.edu/~jpnolan.  
16 In most cases the skew parameter β was estimated with insufficient precision to help discriminate between the 
Gaussian and non-Gaussian stable cases.  
17 The ML estimates of the characteristic exponents for the full sample in this three-lag VAR were 1.6527, 1.7039, 
1.4899, 1.3992, 1.6783, and 1.7363. Alpha = 2.0000 lay outside the 95-percent asymptotic confidence intervals 
for each of the six residuals. For the 1966:1 to 1979:9 subperiod, 2.0000 was not an element of the 95-percent 
confidence interval in two cases, and for the 1988:4 to 2007:11 subperiod, five estimates were more than 1.96 
standard errors from 2.0000. 
18 Differencing all of the data or transforming the model to a VECM would not affect the characteristic exponent 
of a VAR error term with an alpha-stable distribution, owing to the linear properties of these distributions 
(Samorodnitsky and Taqqu 1994: 2). 
19 Bootstrapping seems complex and problematic in this case because of the thick tails and asymmetry that 
characterize the residual distributions, the lack of a pivotal or smooth statistic, the number of nuisance parameters, 
and the likely need for subsampling (Athreya 1987; Lepage and Podgórski 1996).  
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(2001: 388).20 Nonetheless, some diagnostic tools can help determine if the data are consistent 

with a hypothesis of stability (Nolan 2001: 388). Figures 10–15 are variance-stabilized P-P 

plots21 for the ML estimates. The closer the thick, gray line is to the thin, straight line, the 

better the ML stable estimate fits the data. These figures show very good fits for all six sets of 

innovations.22 23 

One way of testing the hypothesis that heteroskedasticity is responsible for the 

appearance of non-normality is to focus on estimates for subsamples. For the 1966:1–79:9 

subsample, the LM tests in the previous section showed that three sets of residuals appeared to 

be free of (G)ARCH: IP, NBR, and TR. For the 1988:4–2007:4 subsample, the residuals for 

the CPI, FFR, NBR, and TR equations were homoskedastic. Tables 9 and 10 show estimates 

for these subperiods, with the no-ARCH equation-subperiod combinations appearing over a 

shaded background. 

The sample splits are unevenly effective in removing the non-normality of the data. 

Given the small sample sizes, the results—including the standard errors—should be interpreted 

with caution. The three different estimators give more divergent results for each set of 

residuals than in the full sample, reducing their credibility. Also, the asymptotic half-

confidence-intervals are much larger than those for the full sample.  

The value 2.0000 falls within the limits of most of the ML confidence intervals for the 

two subperiods. Two cases in which the value α = 2.0000 falls outside the confidence interval 

are the shocks in the NBR and TR equations for the later subperiod, which proved to be 

                                                 
20 Fama and Roll (1971) suggest using the informal stability-under-addition test to test for a stable distribution. 
This test has not performed reliably in simulation studies (Lau and Lau 1993; Fielitz and Rozelle 1983), especially 
with regard to robustness to mixtures. 
21 Variance-stabilized P-P plots for stable distributions, introduced in Michael (1983), apply an arcsin 
transformation to standard P-P plots in order to equalize the variance of all of the points on the plot. The resulting 
plot enables a better assessment of the fit at the extremes of the distribution (Nolan 2001: 388). Let F0 be the ML 
estimate of the distribution of one of the disturbances, using the stable model. Also, let ei , i = 1, 2,….., T-1, T be 
the order statistics of the residuals. Then, the ith abscissa of the modified P-P plot is 

( )[ ]2/1/]2/1[arcsin)/2( niri −= π  
and the ith ordinate is 

[ ])(arcsin)/2( 2/1
0 ii eFs π=  

The smoothed, variance-stabilized P-P plots in this paper are constructed from 200 evenly spaced points using 
STABLE 3.14.02. 
22 Among 40 other tested distributions, the one that appeared to fit the residuals most closely and consistently was 
a log-logistic distribution. 
23 Stable distributions were also fit to the data used to estimate the VAR. These fit very poorly, except for the 
estimated FFR distribution, which had a characteristic exponent of 1.6000, according to the ML estimate. In sharp 
contrast to the highly non-Gaussian shocks, most of the VAR variables had estimated alphas of 2.0000. 
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homoskedastic in the ARCH tests above, with test-equation R2s of .001. Also, for the CPI 

residual in the same subperiod, 2.0000 was nearly outside the 95-percent confidence interval. 

Combining results for both subsamples, the splits eliminate infinite variance for two shocks at 

most—those in the estimated IP and CPI equations. It seems that it is not possible to explain 

completely the thick-tailed and high-peaked shapes of the unconditional residual distributions 

by breaking the sample into separate homoskedastic subperiods.24 The next section discusses 

another approach.  

 

VII. RESULTS WITH GARCH-FILTERED RESIDUALS 

 

Suppose that the shocks in equation i of the reduced form (2) were generated by the widely 

used GARCH(1,1) model 

 

2
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      (7) 

 

where υit is i.i.d. with zero mean and unit variance. Then, the εit would be leptokurtotic, even if 

the υit were normally distributed. As a matter of fact, GARCH(1,1) has often been used as an 

alternative to a alpha-stable model for thick-tailed financial data (e.g., Ghose and Kroner 

1995). For each i, a GARCH(1,1) model can be fitted to the estimated shocks εit
OLS, t = 1, 2, 

3,…., T, to explore this possibility. We estimate (7) using QML, which is a good estimator 

under a null hypothesis of υit with a finite fourth moment, even with a nonstationary DGP 

                                                 
24 As a check for robustness, characteristic exponents were also estimated for 1959:1–1984:1 and 1984:2–2007:11 
subperiods, since some authors find evidence that the key shift in the volatility of macro variables and/or VAR 
shocks in about 1984:2 (e.g., Frale and Veredas 2009; Stock and Watson 2002; Lanne and Lütkepohl 2008). For 
1959:1–1984:1, the Gaussian case fell outside the 95-percent asymptotic ML confidence intervals for FFR and 
NBR. The latter shock was free of ARCH, at the 5 percent significance level, for both 3-lag and 12-lag test-
equation specifications. For 1984:2–2007:11, estimated confidence intervals for CPI, PPI, FFR, NBR, and TR 
excluded α = 2.0000. Again, the shock to the equation for NBR was homoskedastic, according to the two ARCH 
LM tests, at the 5 percent significance level. (Unfortunately, one inverse characteristic root for the 1959:1 to 
1984: 1 subsample had modulus of slightly greater than 1, while the estimated VAR for the 1984:2 to 2007:11 
subsample satisfied the stability condition.)  
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(Jensen and Rahbek 2004; Lee and Hansen 1994; Lumsdaine 1996).25 The results are shown in 

table 11. For the residuals in the equations for PPI and FFR  

 

1ˆˆ
10 ≈+ bb  

 

suggesting an IGARCH model, while that sum is much greater than 1 for the NBR and TR 

processes, implying explosive variance processes (7). Hence, four of the shocks may well be 

non–covariance stationary and have infinite unconditional variance if only for that reason. On 

the other hand, the estimated b0 is within one Bollerslev-Wooldridge (1992) standard error of 

the covariance-stationary region of the parameter space for the NBR and TR shocks, and the 

PPI and FFR estimates fall just within that region, given the estimate of b1. For all equations, 

the υit also appear to have infinite variances, as seen in table 12. All of the 95-percent ML 

confidence intervals for these filtered shocks exclude the Gaussian case, with all estimated 

alphas lying between 1.7638 and 1.8897.  LM tests on each series of filtered residuals fail to 

reject a no-ARCH null at even a .20 significance level, indicating that the filters worked well to 

provide a signal of the conditional distributions of the error terms. (This was true for both 3-lag 

and 12-lag specifications of the test equation.) Variance-stabilized P-P plots for the ML 

estimates show alpha-stable fits that are roughly as good as those shown in figures 10 to 15 for 

the unfiltered residuals. Perhaps a good model for all of the residuals might be a GARCH or 

similar heteroskedastic process with stable, non-Gaussian shocks—and hence infinite 

unconditional variances—rather than a more conventional heteroskedastic model or a 

homoskedastic model with structural breaks.  

 

VIII. SUMMARY AND CONCLUSIONS 

 
This paper reports estimates of the characteristic exponents α of the innovations εit

LS in a six-

variable monetary VAR. The reason for seeking these estimates is that for α < 2, alpha-stable 

distributions have infinite variances, making it impossible to transform the reduced-form DGP 
                                                 
25 Linton, Pan, and Wang (2010) study the properties of the QML estimator for GARCH(1,1) when υit is in the 
domain of attraction of a stable variate with 1 < α < 2. Like Hall and Yao (2003) and Huang, Wang, and Yao 
(2008), they consider GARCH estimators and confidence intervals that are specially designed to be robust to thick 
tails. Berkes, Horváth, and Kokoszka (2003) and Mikosch and Straumann (2006) also prove important properties 
of the QML estimator for GARCH processes with heavy-tailed shocks. 
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into a set of structural equations with orthogonal structural shocks. Proposition 1 shows that no 

method of finding orthogonal disturbances can work when at least one innovation has infinite 

variance, because no nonsingular transformation of the innovations yields orthogonal 

disturbances.  

This paper’s VAR appears to lead to impulse response functions that are typical in the 

monetary VAR literature. However, diagnostics show that the innovations have thick-tailed 

and skewed distributions, with Jarque-Bera tests rejecting the null of normality at a .01 

significance level in each equation. On the other hand, Engle (1982) LM tests indicate fairly 

weak (G)ARCH effects. Such heteroskedastic processes tend to have thick-tailed distributions. 

Pursuing instead a hypothesis that the innovations have stable, non-Gaussian unconditional 

distributions, the paper finds ML estimates of the α’s ranging from 1.5504 for the innovations 

in the equation for the crude materials producer price index (PPI) to 1.7734 for the industrial 

production (IP) equation. Asymptotic confidence intervals for all of the ML estimates rule out 

α = 2, the value for the Gaussian case, though these intervals do not take into account 

uncertainty due to random differences between the error terms and the LS residuals. P-P plots 

provide visual confirmation that the estimated stable distributions fit the innovations very well.  

While the main concern of this paper is the unconditional moments in the covariance 

matrix V of the reduced-form shocks, the study also attempted to separate the respective 

influences of time-varying dispersion and thick-tailed shocks, in light of recent VAR studies 

emphasizing heteroskedasticity. The study re-estimates the VAR for subperiods that appear 

free of heteroskedasticity based on Engle LM tests. For the 1988:4–2007:11 subsample, two 

variables without statistically significant (G)ARCH effects—the innovations in the NBR and 

TR equations—had estimated α’s that were very close to the estimates for the full sample.  

Another attempt to investigate time-varying variance involved estimating GARCH(1,1) 

models by Gaussian QML and fitting alpha-stable distributions to the standardized residuals. 

The Engle ARCH tests for the latter shocks failed to reject the null of no-(G)ARCH in all 

cases. The ML estimates of α for the filtered shocks were somewhat higher, probably reflecting 

the reduction or elimination of heteroskedasticity, but all of the estimated confidence intervals 

still implied infinite-variance at a 95-percent confidence level. P-P plots suggested that the 

estimated alpha-stable distributions still fit the shocks closely. Two of the estimated GARCH 

processes were non–covariance stationary, and two more were marginally covariance-

stationary, but very close to IGARCH. However, many of the estimated coefficients of the 
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variance processes had very large robust standard errors, making inference about covariance-

stationarity impossible.  

The work by Hill (2006) cited in section IV above on nonlinear projections and impulse 

response functions and other, similar efforts may offer some hope for an alternative approach 

when standard SVAR analysis is precluded by problems with infinite-variance. The evidence 

in this paper suggests that a better model than SVAR for some macro data might combine 

time-varying dispersion with stable, non-Gaussian shocks. The empirical generality of the 

findings presented here is not yet known. Hence, caution seems warranted in the use of SVAR.  
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Figure 1. Densities of Standard Normal Distribution and Symmetric Stable 
with Alpha = 1.7 
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Figure 2. Response to Cholesky One-S.D. Shocks in FFR ±  2 S.E. 
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Figure 3. Reduced-Form VAR Least-Squares Residuals (Shocks) εt
LS 
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Figures 4–9. Histograms for εt
LS; INNOV1= IP equation; 2 = CPI equation; 3 = PPI 

equation; 4 = FFR equation; 5 = NBR equation; 6 = TR equation  
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 Histogram and Normal curve for variable
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 Histogram and Normal curve for variable
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Figure 10. Variance-Stabilized P-P Plot for Innovation in IP Equation: Alpha-
Stable Fit (ML Estimate)
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Figure 11. Variance-Stabilized PP Plot for Innovation in CPI Equation: Alpha-
Stable Fit (ML Estimate)
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Figure 12. Variance-Stabilized PP Plot for Innovation in PPI Equation: Alpha-
Stable Fit (ML Estimate)
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Figure 13. Variance-Stabilized PP Plot for Innovation in FFR Equation: Alpha-
Stable Fit (ML Estimate)
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Figure 14. Variance-Stabilized PP Plot for Innovation in NBR Equation: 
Alpha-Stable Fit (ML Estimate)
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Figure 15. Variance-Stabilized P-P Plot for Innovation in TR Equation: Alpha-
Stable Fit (ML Estimate)
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Table 1. Sample Statistics for Reduced-Form Innovations εt
LS, 6-Variable Monetary 

VAR, 1959:1–2007:11 
 IP Equation CPI Equation PPI Equation FFR Equation NBR Equation TR Equation 

 Std. Dev.  0.006249  0.001972  0.027257  0.443849  0.021413  0.019618 

 Skewness  0.022306  0.175226  0.070495 -1.509032  2.794186  6.973937 

 Kurtosis  4.464086  6.285196  12.24979  35.74013  47.98869  123.6040 

 Jarque-Bera 

 Probability 

 51.40351 

 0.000000 

 261.5130 

 0.000000 

 2050.320 

 0.000000 

 25899.56 

 0.000000 

 49239.45 

 0.000000 

 353142.5 

 0.000000 

 

Table 2. Engle Test for ARCH, 3 Lags in Test Equation, Sample Period 1959:1–2007:11 

Equation R2 R2 X T 
IP .051 29.172* 
CPI .091 52.052* 
PPI  .123 70.356* 
FFR .061 34.892* 

NBR .025 14.300* 
TR .019 10.868* 

 

Table 3. Engle Test for ARCH, 12 Lags in Test Equation, Sample Period 1959:1–2007:11 

Equation R2 R2 X T 
IP .071 39.973* 
CPI .109 61.367* 
PPI  .131 73.753* 
FFR .137 77.131* 
NBR .025 14.075 
TR .019 10.697 

 
Table 4. Engle Test for ARCH, 3 Lags in Test Equation, Sample Period 1966:1–1979:9 

 
Equation R2 R2 X T 
IP .012 1.944 
CPI .144 23.328* 
PPI  .103 16.686* 
FFR .072 11.664* 
NBR .001 .162 
TR .025 4.05 
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Table 5. Engle Test for ARCH, 12 Lags in Test Equation, Sample Period 1966:1–79:9 

Equation R2 R2 X T 
IP .047 7.191 
CPI .169 25.857* 
PPI  .135 20.655 
FFR .124 18.972 
NBR .037 5.661 
TR .094 14.382 

 

Table 6. Engle Test for ARCH, 3 Lags in Test Equation, Sample Period 1988:4–2007:11 

Equation R2 R2 X T 
IP .076 17.708* 
CPI .009 2.097 
PPI (raw mat.) .077 17.941* 
FFR .007 1.631 
NBR .001 .233 
TR .001 .233 

 
Table 7. Engle Test for ARCH, 12 Lags in Test Equation, Sample Period 1988:4–2007:11 
 

Equation R2 R2 X T 
IP .104 23.296* 
CPI .040 8.960 
PPI  .085 19.040 
FFR .020 4.480 
NBR .001 .224 
TR .001 .224 
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Table 8. Estimates of α for Innovations in Six-Variable VAR for 1959:1–2007:11 

Equation Estimator 

Characteristic 
Exponent 

Estimate (α) 
(1.96 times  
asymptotic 

S.E.) 
IP Quantile 1.6875 
 Char. function 1.8664 
 ML 1.7734 (.1165) 
CPI Quantile 1.7280 
 Char. Function 1.8189 
 ML 1.7325 (.1208) 
PPI Quantile 1.5987 
 Char. Function 1.6141 
 ML 1.5504 (.1265) 
FFR Quantile 1.5668 
 Char. Function 1.5884 
 ML 1.5623 (.1295) 
NBR Quantile 1.7167 
 Char. Function 1.7391 
 ML 1.7201 (.1221) 
TR Quantile 1.6864 
 Char. Function 1.7543 
 ML 1.7606 (.1180) 
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Table 9. Estimated Characteristic Exponents (α) for 1966:1–79:9 Subsample 

Equation Estimator 

Characteristic 
Exponent 

Estimate (α) 
(1.96 times 
asymptotic 

S.E.) 
IP Quantile 1.8892 
 Char. function 1.9626 
 ML 2.0000 (#) 
CPI Quantile 1.7983 
 Char. Function 1.8648 
 ML 1.8557 (.1869) 
PPI Quantile 1.5987 
 Char. Function 1.8071 
 ML 1.7351 (.2241) 
FFR Quantile 1.6319 
 Char. Function 1.8449 
 ML 1.7630 (.2166) 
NBR Quantile 1.8935 
 Char. Function 1.9432 
 ML 1.8673 (.1815) 
TR Quantile 1.9271 
 Char. Function 1.9813 
 ML 2.0000 (#) 

Notes: # Confidence interval not available for IP and TR 
because standard asymptotic distribution theory does not apply 
at α = 2. 
Results for residuals that were homoskedastic according to the 
tests reported in tables 4 and 5 are shown with a gray 
background.
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Table 10. Estimated Characteristic Exponents (α) 
for 1988:4–2007:11 Subsample 

Equation Estimator 

Characteristic 
Exponent 

Estimate (α) 
(1.96 times 
asymptotic 

S.E.) 
IP Quantile 2.0000 
 Char. Function 1.9401 
 ML 1.8807 (.1489) 
CPI Quantile 1.8258 
 Char. Function 1.8773 
 ML 1.8581 (.1559) 
PPI Quantile 1.7713 
 Char. Function 1.8619 
 ML 1.8520 (.1595) 
FFR Quantile 1.7428 
 Char. Function 1.9431 
 ML 1.9046 (.1401) 
NBR Quantile 1.8169 
 Char. Function 1.7341 
 ML 1.7588 (.1839) 
TR Quantile 1.7204 
 Char. Function 1.7121 
 ML 1.7252 (.1882) 

Notes: Results for residuals that were homoskedastic according 
to the tests reported in tables 6 and 7 are shown with a gray 
background. 
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RESULTS FROM GARCH(1,1) MODEL 
 
Table 11. Estimated Coefficients for GARCH(1,1) Model (7) of Shocks from 6-Variable   
                 VAR, Full Sample* 
 

Variance 
Equation for  

Variable QML Coef. 
Estimate 

S.E.** 

IP residual Constant 2.22 E-05 7.11 E-06 
 Resid(-1)^2 .2126 .0712 
 GARCH(-1) .2140 .1945 
CPI residual Constant 1.04 E-06 3.24 E-07 
 RESID(-1)^2 .1688 .0741 
 GARCH(-1) .5621 .1145 
PPI residual Constant 2.76 E-05 1.14 E-05 
 Resid(-1)^2 .2544 .0855 
 GARCH(-1) .7339 .0627 
FFR residual Constant .0075 .0029 
 RESID(-1)^2 .2754 .1198 
 GARCH(-1) .7062 .0800 
NBR residual Constant 3.07 E-05 1.39 E-05 
 Resid(-1)^2 .6979 .3830 
 GARCH(-1) .5499 .0359 
TR residual Constant 1.14 E-05 1.70 E-05 
 RESID(-1)^2 .7858 .5580 
 GARCH(-1) .5879 .0312 

Notes: *Presample variances computed using backcasting parameter = 0.7 
**S.E. = Bollerslev-Wooldridge (1992) robust standard error 
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Table 12. Estimates of α for GARCH(1,1)-Filtered Innovations* in 6-Variable VAR, Full 
Sample 

Equation Estimator 

Characteristic 
Exponent 

Estimate (α) 
(1.96 times 
asymptotic 

standard error). 
IP Quantile 1.6155 
 Char. function 1.8594 
 ML 1.7638 (.1174) 
CPI Quantile 1.9774 
 Char. Function 1.8672 
 ML 1.7969 (.1129) 
PPI Quantile 2.0000 
 Char. Function 1.9412 
 ML 1.8897 (.0934) 
FFR Quantile 2.0000 
 Char. Function 1.8553 
 ML 1.8512 (.1015) 
NBR Quantile 1.5419 
 Char. Function 1.7918 
 ML 1.8073 (.1108) 
TR Quantile 1.6913 
 Char. Function 1.7800 
 ML 1.7551 (.1189) 

                   * Estimated GARCH(1,1) parameters  
          shown in table 11, above. 

 
 


