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ABSTRACT 

In this paper an alternative approach for the estimation of higher-order linear fixed-effects 

models is described. The strategy relies on the transformation of the data prior to calculating 

estimations of the model. While the approach is computationally intensive, the hardware 

requirements for the estimation process are minimal, allowing for the estimation of models with 

more than two high-order fixed effects for large datasets. An illustration of the implementation 

is presented using the US Census Bureau Current Population Survey data with four fixed effects. 
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1. INTRODUCTION 

 

With the availability of large longitudinal datasets in various fields, the interest in and 

application of models with one or more level fixed effects have increased.  The ability to control 

for unobserved heterogeneity shared across groups using fixed effect models is attractive to 

researchers in fields like economics, sociology, political science and others, such as firm and 

worker (Abowd, Kramarz, & Woodcock, 2008), and schools, teachers, and students (Harris & 

Sass, 2011), as it allows to control for otherwise unobserved heterogeneity within groups. 

Whenever possible, the implementation of these types of models can be done by adding dummy 

sets that absorb the specific fixed effects. 

For cases where the number of groups within a defined category is large, implementing 

such models using dummy sets can be difficult using standard statistical software, as it is 

constrained by the computer’s memory capacity to manage large matrixes of estimated 

parameters. Furthermore, despite the advances in the access to high capacity hardware and 

software,  the process of estimating models with more than one high order fixed effect for large 

datasets can be a challenge.  

While linear models with a single fixed effect can be estimated without the need to 

include the set of dummies as regressors (within estimator and first-difference estimator, (see 

Cameron (2005)), there is no simple solution when there is more than one high dimensional 

fixed effect. Much of the literature dealing with the estimation of these types of models is based 

on the classical paper by Abowd, Kramarz, and Margolis (1999) in which the authors propose 

various methods to obtain estimates for a two-fixed effect model.
1
  

In recent years, many strategies have been developed and implemented, allowing for the 

estimation of one and two high order fixed effects models, with different results in terms of 

systems requirements, computational efficiency and the estimation of standard errors 

(McCaffrey, Lockwood, Mihaly, & Sass, 2012).
2
 Despite the growing literature dealing with 

high order fixed effect models, the analysis of data with more than two fixed effects is not yet 

routine.  In a recent paper, Guimarães and Portugal (2010) presented an algorithm to estimate 

linear models with high order fixed effects, using an iterative conditional regression, which is 

                                                           
1
 For details on these methodologies see Andrews, Schank, and Upward (2006). 

2
 McCaffrey et al. (2012) presents a review of various commands and strategies created for the statistical software 

Stata. 
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later used in Torres, Portugal, Addison, and Guimaraes (2013) to estimate a three way fixed 

effect model. 

The objective of this paper is to provide a feasible methodology that can make the 

estimation of high order fixed effects models more accessible, and demonstrate the 

implementation of the methodology using the statistical software Stata. Our methodology is 

similar to the one suggested in Guimarães and Portugal (2010), but relies on a different 

theoretical foundation and implements a more intuitive strategy. A simple implementation of 

this algorithm is presented as an illustration using US Census Current Population Survey (CPS) 

data. 

The rest of the paper is structured as follows. In Section 2, the base model with a one 

way fixed effect is presented. In section 3, we extend the model to a two-way fixed-effect model, 

and shows the generalization for three or more fixed effect models. The estimations of standard 

deviations are discussed in section 4. Section 5 illustrates the implementation of the strategy 

using CPS data, and we conclude in section 6. 

 

2. ONE FIXED EFFECT MODEL 

 

In the context of an employer-employee linked data, consider the basic model with a single 

fixed effect: 

                     (1) 

 

Where      represents the outcome of person i, working at firm j at time k, where there is 

a total of I individuals and J firms across K periods. In this simple model, assume that the 

outcome of      is a function only of the individual fixed effect   , and a set H of observed 

characteristics    , that could vary across individual, firm and/or time. Finally, let      be a 

homoscedastic error term with mean zero, and uncorrelated with    and   . 

 

 (    |   )      (    )            (       )      (        )    (2) 

 

This model can be directly estimated, without estimating the actual individual fixed 

effects, by subtracting the within person mean from all variables in the model: 

 

 (        )    ̅       ̅   (3) 
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Where   ̅ (  ̅) is the within person i average across all firms and time periods of variable 

  ( ). Subtracting (3) from (1), we obtain the following transformation of the data (this is 

referred to as “de-meaning” the data): 

 

       ̅  (       ̅)            (4) 

 ̃     ̃                 (5) 

 

The latter equations can now be directly estimated using standard ordinary least squares 

(OLS) procedures. It must be recognized that while the error term      remains unmodified in 

equation 5 compared to the original model, the variance-covariance matrix of   (  ) needs to 

be corrected, to account for the degrees of freedom due to the unestimated fixed effects (to be 

discussed in section 5).  

 

3. TWO FIXED EFFECT MODEL 

 

Let us now extend the model to allow for two level fixed effects, such that the outcome y is a 

function of the individual fixed effect   , and the firm fixed effect    where person i works at 

time k: 

 

                             (6) 

 

Similar to the previous case, we assume the error term is well behaved and uncorrelated 

with the explanatory variables and the firm and individual fixed effects. In this case, if we 

obtain the within  person average and within firm average, we obtain: 

 

 (        )    ̅       ̅ 
   ̅        (7) 

 (        )    ̅    ̅ 
      ̅        (8) 

 

Where   ̅ 
 is the average firm effect from all the firms where person i has ever worked, 

and   ̅ 
 is the average individual effect from all individuals who have worked for firm j. In both 

cases, the averages are weighted by the number of times each worker-employer combination is 

observed.  
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Note that while   ̅ 
 (  ̅ 

) is fixed within individual   (firms  ), it still varies across 

individuals (firms).
3
 From equation 6, we can eliminate part of the impact of the individual and 

firm fixed effects, by subtracting the means within the group obtained in expression 7 and 8 we 

obtain: 

 

       ̅    ̅  (      ̅   ̅)    ̅ 
   ̅ 

     , or 

 ̃     ̃      ̅ 
   ̅ 

           (9) 

 

While the main components of the individual and fixed effects (         ) are 

eliminated in equation 9, some heterogeneity remains in as   ̅ 
 and   ̅ 

 vary across firm and 

persons, respectively. It is possible to eliminate this heterogeneity by continuing to de-mean the 

variables in the equation 9, obtaining the corresponding averages: 

 

 (       ̅    ̅    )    ̅    ̅     ̅  (  ̅    ̅    ̅)     ̅ 
   ̅ 

, or  

    ̅  (    ̅)     ̅ 
   ̅ 

       (10) 

 (       ̅    ̅    )    ̅     ̅    ̅  (  ̅     ̅   ̅)    ̅ 
    ̅ 

, or 

    ̅  (    ̅)    ̅ 
    ̅ 

,       (11) 

 

Where,    ̅ is the within firm j average of the average outcomes of individuals i, while 

   ̅ is the within individual i average of the average outcomes in firm j, both weighted by the 

number of times each combination is observed. One must note that while the expressions 

   ̅        ̅ look similar, they will only be the same in cases of a balanced panel. Subtracting 

equations 10 and 11 from equation 9, we can further reduce the individual and firm 

heterogeneity and obtain the following expression: 

 

       ̅    ̅     ̅     ̅  (      ̅   ̅     ̅     ̅)     ̅ 
    ̅ 

      or 

 ̃      ̃    ̃  ( ̃     ̃    ̃)     ̅ 
    ̅ 

        or just 

 ̃̃     ̃̃       ̅ 
    ̅ 

            (12) 

                                                           
3
 The only case when    ̅ 

 and   ̅ 
 are constant across both dimensions (i and j) is when there are the same number of 

observations for all combinations of i and j, equivalent to a balanced panel.  
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Once again, while the heterogeneity observed in equation 9 is no longer present in 

equation 12 (  ̅ 
 and   ̅ 

), some individual and firm heterogeneity in the form of     ̅ 
 and    ̅ 

 

remains. It can be shown, however, that the variation of the heterogeneity that comes from 

   ̅ 
and    ̅ 

 is lower than what was observed previously in    and    (see the proof in appendix 

A). Furthermore, if we continue to iteratively de-mean the variables, we can achieve a 

specification where       ̅ 
 and       ̅ 

 tend to a constant, with their variance equal to zero:  

 

      ̅ 
         ̅ 

    and       ̅ 
         ̅ 

   , thus 

   (      ̅ 
)     (      ̅ 

)        (13) 

 

This process effectively eliminates the fixed effects components from the specification.  

In a similar manner, the expression       ̅ and       ̅ will also tend to a constant which 

is equal to the overall mean  ̅. At this point, the specification can be written as: 

 

 ̃̃⃛     ̃̃⃛                    (14) 

Where: 

 ̃̃⃛           ̅    ̅           ̅         ̅    ̅   (15a) 

 ̃̃⃛           ̅    ̅           ̅         ̅    ̅   (15b) 

 

As shown above, equation 14, just like equation 5, can be directly estimated using standard OLS 

procedures to obtain the unbiased   coefficient. 

 

4. N FIXED EFFECT MODEL 

 

We can now extend the model to allow for N fixed effects. We assume that the outcomes 

  are a function of a set of H characteristics  , and N fixed effects           . 

 

        
 
               (16) 
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As before, we can assume the error   is well behaved, uncorrelated to all fixed effects 

and observed characteristics   . Following the same strategy used for the two fixed effects 

model, we first estimate the means with respect to each fixed effect group:
4
  

 

 (     )    ̅     ̅       ̅ , for all            (17) 

 

Subtracting all means in equation 17 from 16, we start to eliminate the variation coming 

from N fixed effects. Analogous to what was previously seen, however, some heterogeneity will 

remain from the averaged fixed effects (  ̅ 
 for    , and          ).  

 

     ̅
 
    (     ̅

 
   )     ̅        ̅         ̅      , or 

 ̃   ̃      ̅    
 
               (18) 

 

Following a strategy similar to the two fixed effect case, we can attempt to eliminate the 

fixed effects from equation 18, by obtaining the corresponding averages:  

 

  ̃    ̃       ̅    
 
       , for all           (19) 

 

Using each of the group averages, we proceed to subtract 19 from 18, in order to 

eliminate the fixed effects from an iterative de-meaning process. Just as in the two fixed effect 

case, the transformation will steadily eliminate the influence of the fixed effects from the 

variables. After multiple iterations, we can obtain a specification similar to equation 14: 

 

 ̃̃⃛   ̃̃⃛               (20) 

 

Where   and   are defined as: 

 

 ̃̃⃛       ̅
 
         ̅   

 
       

           ̅      
 
      ̅      (21) 

 

                                                           
4
 Note that   ̅ 

   , and that    ̅ 
   ̅ 

. 
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Here, the remaining effect of the fixed effect will be negligible, and equation 20 can be 

estimated using the transformed data to obtain the unbiased   coefficients. 

 

5. ESTIMATION OF THE STANDARD ERRORS  

 

Up to this point, the discussion in the previous section has focused on obtaining a specification 

that allows for the estimation of unbiased   coefficients after accounting for all fixed effects. As 

seen in equations 6, 14 and 20, even after transforming the variables, the error term remains 

unchanged, and can be used to estimate the variance-covariance matrix. 

From equation 20, after eliminating the influence of the fixed effects, the corresponding 

variance-covariance matrix associated with the coefficients   would be: 

 

   ( ̃)  
   

   
 ( ̃̃⃛  ̃̃⃛)

  

       (22) 

 

Because the vector of variables  ̃̃⃛ is orthogonal to the individual and fixed effects, thus 

already taking into account the absence of the dummy cross-products in the inverted matrix, the 

main difference with the estimation of the original specification is the number of degrees of 

freedom. In the original model estimates, if we were able to estimate it, it would require the 

estimation of H parameters for each variable in x, plus up to           fixed effects (or 

I+J in the two fixed effect case). As noted by Abowd et al. (1999), not all fixed effects can be 

estimated, as there might not be enough observations to fully identify the fixed effects.  

In Abowd, Creecy, and Kramarz (2002), an algorithm is presented to identify “mobility 

groups” for the case of two fixed effects (firms-workers). These mobility groups represent the 

number of parameters among the fixed effects that cannot be identified, nor estimated in the 

original model. For the case of three or more fixed effects, there is no exact solution to estimate 

the total number of unidentifiable parameters in the system. A modification to the algorithm 

presented in Abowd et al. (2002) is proposed here to find an approximation of the  number of 

unidentifiable parameters in the model.  

We will assume the model has N fixed effects (equation 16), and call these fixed effects 

      up to   . 

1. Using groups    and   , identify the number of mobility groups using the algorithm 

in Abowd et al. (2002). Call the number of mobility groups   . 
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2. Create a new index identifying all the interactions of    and   , and call it     . 

3. Using groups      and   , identify the number of mobility groups   . 

4. Repeat 2 and 3 until all fixed effects are used. 

 

The total number of unidentifiable parameters will be      
   
   . The algorithm 

presented above provides a good empirical approximation for the true number of unidentified 

parameters    If the results are invariant to the order of fixed effects,   is the exact number of 

unidentified parameters. On the other hand, if the results vary with respect to the order of fixed 

effects used, the estimated   becomes an upper bound for the number of unidentifiable 

parameters. 

Once    is estimated, the variance-covariance matrix can be corrected using the correct 

degrees of freedom as follows: 

 

   ( ̂)  
   

       
 ( ̃̃⃛  ̃̃⃛)

  

       (23) 

 

6. ALGORITHM AND ILLUSTRATION 

 

In this section, we present the implementation of the algorithm proposed in the previous section 

using a sample obtained from the basic CPS monthly survey from 2007 and 2008. The 

implementation was done using the statistical software Stata v12, using a Xeon CPU 1.8GHz, 

and 8GB of memory. While the dataset does not provide the richness and complexity typically 

found in employer-worker linked data or school-teacher data, it still illustrates how the strategy 

can be used to estimate a linear model with multiple fixed effects.
5
 

We assume a simple wage model: 

 

                               (24) 

 

Where hourly log wages (   ) are a function of age, sex, years of education achieved, 

union status (X) , and fixed effects depending on the industry (ind) and occupation (occ) of the 

workers, the year*month of the survey (yrm), and the state where they are from (st). As a 

                                                           
5
 The program used to obtain the results presented in this section can be found in appendix B. 
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benchmark, the model is estimated using dummy sets to capture the four fixed effects, as is 

typically done (column 1 in Table 1). 

Under the assumption that the previous model is correctly specified, if we were to ignore 

the fixed effects in the specification, this would generate a bias on all parameters. In this 

example, the estimates omitting the fixed effects indicate that while the estimation of the union 

wage gap and age return are similar to the benchmark, returns of education and sex are larger 

(column 2). 

We now proceed to transform the data. The algorithm is an iterative process where each 

subsequent mean calculation and transformation is applied to the previously transformed data. 

The algorithm used for the estimation procedure can be described as follows: 

1. Identify all variables of interest in the model. (i.e. wages, unions, years of education, 

sex and age). 

2. Identify all fixed effect variables not to be estimated in the model. (i.e. industry, 

occupation, state and year*month).  

3. For each of the variables of interest i: 

a. Replace variable i with the demeaned variable i with respect to the first fixed 

effect variable. 

b. Repeat the de-meaning process of variable i, using each fixed effect variable 

k. 

4. Estimate the OLS model using the de-meaned data. 

5. Check for changes on the root mean squared error of the model estimated in step 4. If 

there are no (significant) changes, finish the process and provide estimates; if not, 

repeat steps 3 and 4.  

 

This procedure is a modification of the base algorithm described in section 4 that 

facilitates the programming. This alternative algorithm centers all variables at zero, so the 

models should be estimated with no constant. For this example, the process is repeated until the 

model shows no significant improvements using double precision.
6
 

As we can see, the parameter estimates of the transformed data are the correct ones, as 

they match those of the benchmark model (column 3). As discussed in section 5, however, the 

                                                           
6
 While the algorithm estimates the regression on every stage, it can be modified to check convergence on 

individual parameters, or every certain number of “steps”. To obtain exact values, we use double precision criteria, 

however, with parameters as large as 0.001 the estimates are close to the benchmark ones. 
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standard errors of the model need to be corrected to match those of the benchmark. For this 

purpose, we estimate the number of unidentifiable parameters by applying the algorithm 

described in section 5. The results are shown in column 4 of Table 1. 

 

Table 1. Alternative specifications of wage equation model 

 

OLS with 

FE 
OLS no FE 

OLS - 

Trans data 

OLS - 

Trans data, 

correct 
     union 0.185947 0.191169 0.185947 0.185947 

 

(0.004203) (0.004867) (0.004193) (0.004203) 
     escol 0.050235 0.114177 0.050235 0.050235 

 

(0.000516) (0.000485) (0.000515) (0.000516) 
     sex 0.142023 0.245948 0.142023 0.142023 

 

(0.002561) (0.002523) (0.002555) (0.002561) 
     age 0.005598 0.006870 0.005598 0.005598 

 

(0.000082) (0.000100) (0.000082) (0.000082) 
     N 165439 165439 165439 165439 

 

For this particular example, the algorithm takes 62 iterations before it achieves 

convergence using double precision, taking a total of 1:10 minutes. This is faster than the 

algorithm used in gpreg.
7
 It is unclear if the same increase in processing speed would be 

observed for larger datasets.  The comparability of the algorithms is partial, as there are no 

alternative commands that deal with more than 2 fixed effects without introducing the additional 

fixed effects as explicit dummy sets in the models.
8
  As it can be appreciated in figure 1, the 

parameters are very close to the true ones after less than 10 iterations. This should be taken into 

consideration, bearing in mind that the processing time could increase geometrically for larger 

datasets and more complex specifications.  

 

                                                           
7
 The command gpreg, which is also described to be computationally intensive, takes 2:24 min to estimate the 

model.  
8
 As shown in McCaffrey et al. (2012), commands like areg, xtreg, and felsdvreg perform better for models with 

fewer levels on the second fixed effect. In this case, gpreg is slower, as it needs to estimate more parameters for the 

additional fixed effects. 
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Figure 1: Parameters Convergence by Iteration 

 

 

7. CONCLUSIONS 

In this paper an alternative methodology for estimating linear models with N-fixed 

effects model has been presented, which uses an intuitive strategy already used for cases with 

fewer fixed effects. While other alternatives have been suggested in the literature, none of them 

present feasible alternatives for estimating linear models with more than two fixed effects. The 

closest proposition to solve this problem has been Guimarães and Portugal (2010) and its 

application in Torres et al. (2013), which does not elaborate on the details of the expansion to N-

fixed effects.  

While this strategy is computationally demanding, the ability to freely exchange fixed 

effects from the explanatory variables to the fixed effects sets allows to better control the 

memory requirements for the estimation of the models. For instance in the paper by Hotchkiss, 

Quispe and Rios-Avila (2013), this methodology is used to estimate a fixed effect model with 4 

fixed effects 3,376,102 workers, 93,021 firms, 40 quarters, and 159 counties, a model that could 

not be estimated using other available strategies.  
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Appendix A 

Let    be a variable with an overall mean  ̅ and variance   
 . Without loss of generality, 

assume that the ith means of    (  ̅) are all different from each other, i.e.    ̅
   . 

The variance of variable y can then be written as: 

 

  
     (  )   [(    ̅) ]      (1A) 

 

Maintaining the equality on the expression, we can add and subtract the ith mean to 

expression in parenthesis, obtaining the alternative variance expression: 

 

   
   [(     ̅    ̅   ̅)

 
]         (2A) 

 

Expanding this expression, we obtain: 

 

   
   [(     ̅)

 
 (  ̅   ̅)

 

  (     ̅)(  ̅   ̅)] 

  
   [(     ̅)

 
]   [(  ̅   ̅)

 
]    [(     ̅)(  ̅   ̅)]   

  
   [(     ̅)

 
]   [(  ̅   ̅)

 
]   [ (    ̅    ̅

 )]   (3A) 

 

Using iterative expectations, the third term of the expression is equal to zero. 

 

 (    ̅    ̅
 )   [ (    ̅    ̅

     )]    

 

Thus: 

  
   [(     ̅)

 
]   [(  ̅   ̅)

 
]     

       ̅
     ̅

    (4A) 

 

Finally, the overall variance of y can be decomposed into two components, one corresponding to 

the within variation      ̅
 , and one corresponding to the across variation    ̅

 . Given that all 

variances must be positive by construction, this implies that the variance of de-meaned data, and 

the within group means are smaller than that of the original data. 

In a similar matter, we can further decompose the across individual variance    ̅
 , respect 

to an alternative subgroup. Say we decompose respect to groups j, it follows that: 



A-2 
 

   ̅
     ̅    ̅

      ̅
  

 

Using the same strategy, with iterative decompositions, it follows that variance of subsequent 

transformations and tends to zero: 

 

  
     ̅

      ̅
           ̅
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Appendix B 

 

The following the code was used for the estimation of the results in this paper. It provides one 

possible implementation of the algorithm described in this paper.  

 

set more off 

clear all 

use C:\Users\user\Downloads\cps_sample , clear 

 

* benchmark 

codebook ind occ state yrm 

recast double lnwageh union escol sex age ind occ state yrm 

set matsize 1000 

reg lnwageh union escol sex age i.ind i.occ i.state i.yrm 

est sto eq1 

reg lnwageh union escol sex age  

est sto eq2 

 

global varXY union escol sex lnwageh age  

global ffee ind occ state yrm 

* Data is itself modified 

local a0=0 

local a1=10 

display "$S_TIME" 

global t0="$S_TIME" 

while abs(`a0'-`a1')>epsfloat(){ 

local a0=`a1' 

qui: reg lnwageh union escol sex age,      

matrix b=nullmat(b) \ e(b) 

local a1=e(rmse)  

qui: foreach h of global ffee { 

  foreach i of global varXY  { 

   capture drop i_ 

   bysort `h':egen double i_=mean(`i') 

   replace `i'=`i'-i_ 

  } 

 } 

}  

 

reg lnwageh union escol sex age, nocons 

est sto eq3 

 

*** estimating unidentified parameters 

*Nr of Fixed effects:4 

#delimit; 

gen id0=_n;gen id1=_n;gen id2=_n;gen id3=_n;gen flag=1; 

#delimit cr 

egen fe1= group(ind) 

egen fe2= group(occ) 

egen fe3= group(state) 

egen fe4= group(yrm) 

egen fe1_2=group(ind occ) 

egen fe1_2_3=group(ind occ state) 
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while flag { 

 capture drop id0a id1a id2a id0b id1b id2b  

 bysort fe1:egen  id0a=min(id0) 

 bysort fe1_2:egen  id1a=min(id1) 

 bysort fe1_2_3:egen  id2a=min(id2) 

 bysort fe2:egen  id0b=min(id0a) 

 bysort fe3:egen  id1b=min(id1a) 

 bysort fe4:egen  id2b=min(id2a) 

 count if ![(id0==id0b)&(id1==id1b)&(id2==id2b)] 

 if r(N)==0 { 

   replace flag=0 

 } 

 replace id0=id0b 

 replace id1=id1b 

 replace id2=id2b 

} 

scalar G=0 

foreach h in id0 id1 id2 { 

capture drop _k 

egen _k=group(`h') 

sum _k 

scalar G=G+r(max) 

} 

** TOtal parameters among FE 

scalar DF=0 

foreach h of global ffee { 

 capture drop _k 

 egen _k=group(`h') 

 sum _k 

 scalar DF=DF+r(max) 

} 

* Correcting for DF 

ssc install erepost 

reg lnwageh union escol sex age, nocons 

matrix V=e(V)*e(df_r)/(e(df_r)-DF+G) 

erepost V=V 

display "$S_TIME" 

global t1="$S_TIME" 

ereturn display 

est sto eq4 

est tab eq1 eq2 eq3 eq4, se keep(union escol sex age ) se(%6.5f) b(%6.5f) 

 

 


