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ABSTRACT 

 

Increases in the federal funds rate aimed at stabilizing the economy have inevitably been 

followed by recessions. Recently, peaks in the federal funds rate have occurred 6–16 months 

before the start of recessions; reductions in interest rates apparently occurred too late to prevent 

those recessions. Potential leading indicators include measures of labor productivity, labor 

utilization, and demand, all of which influence stock market conditions, the return to capital, and 

changes in the federal funds rate, among many others. We investigate the dynamics of the spread 

between the 10-year Treasury rate and the federal funds rate in order to better understand “when 

to ease off the (federal funds) brakes.” 

 

KEYWORDS: Federal Funds Rate; Yield Curve; Monetary Policy; Nonlinear Dynamics; 

Takens’ Embedding 

 

JEL CLASSIFICATIONS: C40; C60; E17; E42; E52 
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1. INTRODUCTION 

 

Many authors have found the yield curve, specifically the spread between the interest rates on the 

10-year Treasury note and the 3-month Treasury bill, to be a useful predictor of recessions 

(Estrella and Hardouvelis 1991; Estrella and Mishkin 1996, 1998; Estrella and Trubin 2006; Liu 

and Moench 2014). In particular, Liu and Moench (2014) explored combinations of this 

spread—the spread lagged six months (that is, the spread six months previous to the date under 

consideration)—and one of a variety of other economic variables as predictors. This work raises 

several questions: Are there other useful measures of the yield curve? Is the six-month lag 

optimal? Can one reconstruct a business cycle from yield curve data? Can the prediction 

algorithm inform control of the (monetary side of) the economy to “prevent” recessions? 

 

Here we address these issues using tools from mathematical dynamics, in particular the Takens’ 

(1981) embedding theorem (see also Broomhead and King [1986] and Sauer, Yorke, and 

Casdagli [1991]) and nonlinear smoothing (locally weighted scatterplot smoothing, or lowess) 

(Cleveland 1979; Cleveland and Devlin 1988) as implemented by Warnes et al. (2016) in the 

computer language R (R Core Team 2017) for separation of time scales (Kreiss 1979; Zhang, 

Mykland, and Aït-Sahalia 2005; Brackbill and Cohen 2014). The use of the spread as a predictor 

of recessions suggests that the spread (or its components) is a useful observable in the language 

of control theory (c.f., Hermann and Krener 1977). While control theory has antecedents from 

the 19th century (Maxwell 1868), contemporary antecedents begin with Kalman (1960), and 

Kalman, Falb, and Arbib (1969), who developed an efficient linear updating procedure with 

broad application. 

 

Estrella and Trubin (2006) describe how monetary policy and investor expectations affect the 

slope of the yield curve. They explain,  
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a tightening of monetary policy usually means a rise in short-
term interest rates, typically intended to lead to a reduction in 
inflationary pressures. … Whereas short-term interest rates are 
relatively high as a result of the tightening, long-term rates 
tend to reflect longer term expectations and rise by less than 
short-term rates. The monetary tightening both slows down the 
economy and flattens (or even inverts) the yield curve. 
Changes in investor expectations can also change the slope of 
the yield curve [defined by these authors as the difference 
between the 10-year rate and the 3-month rate]. Consider that 
expectations of future short-term interest rates are related to 
future real demand for credit and to future inflation. 

 

As a consequence, Estrella and Hardouvelis (1991) observed that the “slope of the yield curve is 

a good predictor 4 quarters ahead of a recession.”  

 

More recently, Bauer and Mertens (2018) defined the yield curve as the difference between the 

10-year and the 1-year rates. As quoted in Phillips (2018), this yield curve “correctly signaled all 

nine recessions since 1955 and had only one false positive, in the mid-1960s, when an inversion 

was followed by an economic slowdown but not an official recession.” 

 

The rest of this paper is organized as follows: section 2 proposes a reconceived spread and its 

predictive ability; section 3 undertakes nonlinear dynamics of the spread via Takens’ embedding 

after separation of time scales; section 4 discusses why dimension 2 is reasonable; and section 5 

concludes with a discussion of limitations and implications for future research. 

 

 

2. SPREAD VERSUS FEDERAL FUNDS RATE 

 

Motivated by control theory, we propose and consider here a modified definition of the spread, 

namely the 10-year rate minus the effective federal funds rate. In terms of the Fed monthly time 

series: 

 

Spread = 10-year rate – effective federal funds rate 

= GS10 – FEDFUNDS      (1) 
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Unless otherwise noted, the terms “yield curve” and “spread” shall refer to this definition. Note 

that this spread was one of the variables considered but rejected by Liu and Moench (2014). 

Whereas the Fed only controls the 3-month rate indirectly, it does essentially directly control the 

effective federal funds rate, which may thus be regarded as a control variable in the language of 

control theory (figure 1A). In addition, the Fed exerts at least indirect control over the 10-year 

rate through control of the balance sheet and, in particular, the mix of government refinancing. 

Finally, there is a close relationship between the federal funds rate (FEDFUNDS) and the 3-

month rate (TB3MS), as shown in figure 1, so that this spread is closely related to the more 

traditional spread. 

 

  



 

Figure 1
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3. NONLINEAR DYNAMICS OF THE SPREAD VIA TAKENS’ EMBEDDING AFTER 

SEPARATION OF TIME SCALES 

 

Since the spread GS10  FEDFUNDS, as defined in equation (1) appears to be a useful predictor 

of recessions (c.f., Estrella and Hardouvelis 1991; Estrella and Mishkin 1996, 1998; Estrella and 

Trubin 2006; Liu and Moench 2014; Bauer and Mertens 2018), one may consider it to be an 

observable in the sense of control theory. 

 

This observation leads to asking whether one can reconstruct (at least a useful part of) the 

dynamics of the US economy from the dynamics of the yield curve, using the Takens’ 

embedding theorem. In particular, we use Takens’ embedding and lag plots to model the 

dynamics of the yield curve, the latter following the program corrDim in the package fractal in R 

(Constantine and Percival 2017). The lag in Takens’ embedding is determined using the first 

zero crossing of the autocorrelation, and is notably longer than the six-month and twelve-month 

lags used in Liu and Moench (2014). Lag plots of smoothed data can uncover significant linear 

and nonlinear patterns in data (c.f., Takens 1981; Sauer, Yorke, and Casdagli 1991; Hastings et 

al. 1996; Sauer 2006), while the Takens’ embedding theorem shows that lagged data of one 

signal suffices to produce an embedding of n-dimensional dynamics (Takens 1981; Grassberger 

and Procaccia 1983; Sauer, Yorke, and Casdagli 1991; Sauer 2006). 

 

 

3.1  Overview of Mathematical Concepts 

Dynamical systems 

The term “dynamical systems” refers to describing the temporal evolution of complex 

(dynamical) systems, usually by employing differential equations or difference equations. The 

state of a dynamical system at any given time can be represented by a vector in an appropriate 

state space. Its temporal evolution is thus represented by a trajectory in a state space; thus the 

state at any time is given by a tuple of real numbers (a vector) in an appropriate state space. 

Casdagli (1991) reviews the use of dynamical systems in modeling input-output systems. 
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Attractor   

Roughly speaking, an attractor for a dynamical system is a closed subset A of its state space 

toward which trajectories in a neighborhood of the attractor tend to evolve, even if slightly 

perturbed (Milnor 2006). For example, the state space of a physical system may consist of 

positions and momenta of its components. The state space of an economic system may consist of 

variables such as the inflation rate, unemployment rate, gross domestic product, interest rates, 

etc. The business cycle can be considered as a trajectory in such an economic state space.  

 

Thus, the first challenge in describing and understanding the dynamics of a complex system is to: 

 

(a) find and identify a suitable finite-dimensional state space (if one exists);  

(b) find and characterize an attractor within that state space (if one exists); and finally, 

(c) describe the temporal evolution of the system on the attractor. 

 

Even a good approximation can be useful. In many cases, the Takens’ embedding theorem (see 

also Broomhead and King [1986] and Sauer, Yorke, and Casdagli [1991]) is a useful starting 

point. The Takens’ embedding theorem states that one can reconstruct an n-dimensional attractor 

for a dynamical system through plotting sequences of lagged observations  ൫ݕሺݐሻ, ݐሺݕ െ ߬ሻ, ݐሺݕ െ

2߬ሻ, … , ݐሺݕ െ 2݊߬ሻ൯ of one signal (coordinate, observable) from that attractor (Sauer [2006]; see 

also supplemental material to Sugihara et al. [2012]) for an appropriate time lag ߬.  Even without 

knowing n, these lag plots can convey useful information about the attractor.  

 

Correlation Dimension 

The complexity of an attractor can be characterized by its correlation dimension. The correlation 

dimension is a natural generalization of familiar formulas for area and volume. The area of 

simple two-dimensional (2D) geometric objects is represented by the product of two linear 

dimensions, for example, ܣ ൌ length	 ൈ width for a rectangle and ܣ ൌ  .ଶ for a (solid) circleݎߨ	

The volume of simple three-dimensional (3D) geometric objects is represented by the product of 

three linear dimensions, for example, ܸ ൌ length	 ൈ width	 ൈ height for a rectangular 

parallelepiped and ܸ ൌ  ଷ for a (solid) sphere. Finally, since the circumference of (theݎߨ		4/3

boundary of) a circle is ܥ ൌ  the boundary is one dimensional. The natural dimension of ,ݎߨ2
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attractors reconstructed by the Takens’ embedding theorem, which are simply sets of points, is 

an exponent ܦ for which the number of points within a distance ݎ  of a typical point scales is: 

 

	ݐݏ݊݋ܿ	~	ܦ ൈ	ݎ஽         (2) 

 

Note that the correlation dimension need not be an integer since it is an example of a fractal 

dimension. The use of the correlation dimension to characterize an attractor is known as the 

Grassberger-Procaccia (1983) algorithm (c.f., Grassberger [2007] for a review). 

 

Application of these methods to time series data is limited by the length of the time series. 

Eckmann and Ruelle (1992) show “that values of the correlation dimension estimated over a 

decade from the Grassberger-Procaccia algorithm cannot exceed the value 2 log10N if N is the 

number of points in the time series.” 

 

3.2 The Time Lag 

In general, there is no optimal time lag ߬  for attractor reconstruction via the Takens’ embedding 

theorem. We have used one of the standard methods, namely, the first zero of the autocorrelation 

function: the correlation of  ݕሺݐሻ and ݕሺݐ െ ߬ሻ. For example, if ݕሺݐሻ ൌ cosሺ2ݐߨ ܶ⁄ ሻ,	a simple 

periodic function with period ܶ, this method finds the time lag ߬ ൌ ܶ 4⁄ . Note that ݕሺݐ െ ߬ሻ ൌ

ݐሺݕ െ ܶ 4⁄ ሻ ൌ sinሺ2ݐߨ ܶ⁄ ሻ. We found ߬ ൌ  26 months for the time series of monthly spread data 

from 1955 to 2018 (GS10  FEDFUNDS, 768 points), using the “timelag” program in the fractal 

package in R (Constantine and Percival 2017). 
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scales so that Takens’ embedding focuses on an empirically appropriate timescale, yielding a 

2D attractor in 3D space. 

 

3.4 Smoothed Data 

A graph of the time series of the spread (figure 2) suggests a time scale of 7–10 years for a full 

“cycle” and thus the 26-month lag above approximates a quarter of the cycle. For reference, 

consider a sine wave of period T, represented by the formula: ݊݅ݏ൫ሺ2ߨ ܶ⁄ ሻݐ൯. The corresponding 

cosine wave ܿݏ݋൫ሺ2ߨ ܶ⁄ ሻݐ൯ is uncorrelated with the sine wave (the integral over any whole 

number of periods ׬ ߨ൫ሺ2݊݅ݏ ܶ⁄ ሻݐ൯ܿݏ݋൫ሺ2ߨ ܶ⁄ ሻݐ൯݀ݐ ൌ 0) and lags the sine wave by a quarter 

period, namely ܶ 4⁄ ߨ൫ሺ2ݏ݋ܿ : ܶ⁄ ሻݐ൯ ൌ ߨ൫ሺ2݊݅ݏ ܶ⁄ ሻݐ െ ߨ 2⁄ ൯ ൌ ߨ൫ሺ2݊݅ݏ ܶ⁄ ሻሺݐ െ ܶ 4⁄ ሻ൯. In 

order to better focus on dynamics over this time scale, we introduce the use of lowess smoothing, 

a nonlinear smoothing technique, to effect a separation of time scales. 

 

In addition to lowess, there are several standard algorithms to highlight essential features that are 

hidden by the noise, e.g., moving averages and Gaussian filters (c.f., Hyndman 2011) and 

wavelets (c.f., Yi, Li, and Zhao 2012). We used lowess rather than moving averages for 

detrending because: (1) the trend (dynamic on scales > 7–10 years) may be nonlinear and 

subtracting a moving average would assume a linear trend; and (2) smoothing the “very fast” 

dynamics on scales < 26 months might be accomplished by lowess or more local smoothing 

techniques (e.g., Gaussian filters). We chose lowess because it is also used to remove the trend. 

 

In sum, we study smoothed, detrended dynamics as follows: 

a. Detrending, where the trend is computed using a lowess smoother (using default 

parameters in the gplot package in R [Warnes et al. 2016]); 

b. Smoothing (lowess, with lowess parameter f=.05); 

c. Computing the correlation dimension, using the program corrDim in the package 

fractal in R (Constantine and Percival 2017). 

 

This process is summarized in figure 4 and the resulting dynamics are shown in figure 5B. Note 

the same 26-month lag, but now the correlation dimension stabilizes at 2 (table 3). 
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The Goodwin model (a two-variable model) combines Lotka-Volterra predator-prey dynamics1 

with an exponential growth term. Lotka-Volterra dynamics yield neutrally stable cycles, so 

Goodwin-Lotka-Volterra dynamics are not structurally stable and may thus exhibit complex 

responses to noise (Velupillai 1979; Pohjola 1981; Flaschel 1984; Boldrin and Woodford 1990; 

Desai et al. 2006; Veneziani and Mohun 2006). A neutrally stable cycle is a one-dimensional 

object (like a circle). A cycle, with amplitude varying randomly within bounds, will generate 

trajectories in an annulus of dimension = 2. Lotka-Volterra dynamics density-dependent growth 

plus noise is readily seen to generate noise-driven limit cycles of dimension  2, as seen below. 

Equations for the noise-driven cycle with jump processes can be given as:  

 

Capital, prey:   ݔ߂ଵ ൌ ଵሺ1ݔଵߠ െ ଵሻݔ െ ଶݔଵݔଵߛ ൅ ݓ߂ଶݔଵݔଵߪ ൅  ݌݉ݑ݆

Labor, predator: ݔ߂ଶ ൌ ଶݔଵݔଶߛ െ ଶݔଶߠ ൅  (3)    ݓ߂ଶݔଵݔଶߪ

 

Figure 6 shows the typical results of such a simulation, integrated with the Euler-Maruyama 

algorithm, a standard algorithm for numerical integration of stochastic differential equations 

(Higham 2001).  

 

 

 

 

 

 

 

  

                                                            
1 Lotka (1924); see also the reviews by Hoppensteadt (2006) and Baigent (2010). Barbosa, Filho, and Taylor (2006) 
combine similar dynamic combined with growth. In the terminology of Lotka-Volterra models, the workers’ share is 
the “predator” and the capital share the “prey” (Veneziani and Mohun 2006; Huu,Nguyen, and Costa-Lima 2014). 
See also Harvie (2000) and Stockhammer and Michell (2016) for Goodwin dynamics. 
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behavior, peaking just before recessions. Takens’ embedding following lowess smoothing and 

separation of time scales also yields dimension 2 (figure 8). 
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We conclude with some discussion of our results, including limitations and potential for future 

work. 

 

 

5. DISCUSSION 

 

In this paper we studied the dynamics of the yield curve followed by suitable detrending and 

separation of time scales via lowess smoothing resulting in quasicyclic dynamics. One standard 

approach to Takens’ (1981) embedding found the first zero of autocorrelation at a lag of 26 

months, and a “macroeconomic attractor” of dimension  2. The 26-month lag was shown to be 

consistent with the lag associated with monetary effects on the macroeconomy using Sugihara 

causality. We plan to extend the use of dynamic time series analysis in monetary and 

macroeconomic analysis, pointing the way toward future applications across variables and 

economic settings, including: (1) sectoral analysis; (2) analysis of yield curves with multiple 

maturities; (3) market microstructure analysis of Treasury issuance and limit order and order 
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books; (4) inclusion of various yields of different financial instruments in a multivariate exercise; 

and (5) comparison between and across countries, undertaken perhaps under the null hypothesis 

of  2 dimensional dynamics.    

 

Limitations 

Although we find this approach and results to be interesting, substantive, and demonstrative, 

potential attractor dynamics and topology via variable selection and modeling regimes still 

remain to be explored. One may also need to consider velocity (derivatives) of variables in 

variables themselves, as well as multidimensional embedding (Barnard, Aldrich, and Gerber 

2001), data-driven equation-free approaches (Ye et al. 2015), and alternative filtering 

techniques—such as Takens-Kalman filtering (Hamilton, Berry, and Sauer 2016, 2017)—in 

order to generate fundamental, core predictive dynamical models. 
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