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ABSTRACT

Increases in the federal funds rate aimed at stabilizing the economy have inevitably been
followed by recessions. Recently, peaks in the federal funds rate have occurred 6-16 months
before the start of recessions; reductions in interest rates apparently occurred too late to prevent
those recessions. Potential leading indicators include measures of labor productivity, labor
utilization, and demand, all of which influence stock market conditions, the return to capital, and
changes in the federal funds rate, among many others. We investigate the dynamics of the spread
between the 10-year Treasury rate and the federal funds rate in order to better understand “when

to ease off the (federal funds) brakes.”

KEYWORDS: Federal Funds Rate; Yield Curve; Monetary Policy; Nonlinear Dynamics;
Takens’ Embedding

JEL CLASSIFICATIONS: C40; C60; E17; E42; E52



1. INTRODUCTION

Many authors have found the yield curve, specifically the spread between the interest rates on the
10-year Treasury note and the 3-month Treasury bill, to be a useful predictor of recessions
(Estrella and Hardouvelis 1991; Estrella and Mishkin 1996, 1998; Estrella and Trubin 2006; Liu
and Moench 2014). In particular, Liu and Moench (2014) explored combinations of this
spread—the spread lagged six months (that is, the spread six months previous to the date under
consideration)—and one of a variety of other economic variables as predictors. This work raises
several questions: Are there other useful measures of the yield curve? Is the six-month lag
optimal? Can one reconstruct a business cycle from yield curve data? Can the prediction

algorithm inform control of the (monetary side of) the economy to “prevent” recessions?

Here we address these issues using tools from mathematical dynamics, in particular the Takens’
(1981) embedding theorem (see also Broomhead and King [1986] and Sauer, Yorke, and
Casdagli [1991]) and nonlinear smoothing (locally weighted scatterplot smoothing, or lowess)
(Cleveland 1979; Cleveland and Devlin 1988) as implemented by Warnes et al. (2016) in the
computer language R (R Core Team 2017) for separation of time scales (Kreiss 1979; Zhang,
Mykland, and Ait-Sahalia 2005; Brackbill and Cohen 2014). The use of the spread as a predictor
of recessions suggests that the spread (or its components) is a useful observable in the language
of control theory (c.f., Hermann and Krener 1977). While control theory has antecedents from
the 19th century (Maxwell 1868), contemporary antecedents begin with Kalman (1960), and
Kalman, Falb, and Arbib (1969), who developed an efficient linear updating procedure with

broad application.

Estrella and Trubin (2006) describe how monetary policy and investor expectations affect the

slope of the yield curve. They explain,



a tightening of monetary policy usually means a rise in short-
term interest rates, typically intended to lead to a reduction in
inflationary pressures. ... Whereas short-term interest rates are
relatively high as a result of the tightening, long-term rates
tend to reflect longer term expectations and rise by less than
short-term rates. The monetary tightening both slows down the
economy and flattens (or even inverts) the yield curve.
Changes in investor expectations can also change the slope of
the yield curve [defined by these authors as the difference
between the 10-year rate and the 3-month rate]. Consider that
expectations of future short-term interest rates are related to
future real demand for credit and to future inflation.

As a consequence, Estrella and Hardouvelis (1991) observed that the “slope of the yield curve is

a good predictor 4 quarters ahead of a recession.”

More recently, Bauer and Mertens (2018) defined the yield curve as the difference between the
10-year and the 1-year rates. As quoted in Phillips (2018), this yield curve “correctly signaled all
nine recessions since 1955 and had only one false positive, in the mid-1960s, when an inversion

was followed by an economic slowdown but not an official recession.”

The rest of this paper is organized as follows: section 2 proposes a reconceived spread and its
predictive ability; section 3 undertakes nonlinear dynamics of the spread via Takens’ embedding
after separation of time scales; section 4 discusses why dimension ~2 is reasonable; and section 5

concludes with a discussion of limitations and implications for future research.

2. SPREAD VERSUS FEDERAL FUNDS RATE

Motivated by control theory, we propose and consider here a modified definition of the spread,
namely the 10-year rate minus the effective federal funds rate. In terms of the Fed monthly time

series:

Spread = 10-year rate — effective federal funds rate

= GS10 — FEDFUNDS (1)



Unless otherwise noted, the terms “yield curve” and “spread” shall refer to this definition. Note
that this spread was one of the variables considered but rejected by Liu and Moench (2014).
Whereas the Fed only controls the 3-month rate indirectly, it does essentially directly control the
effective federal funds rate, which may thus be regarded as a control variable in the language of
control theory (figure 1A). In addition, the Fed exerts at least indirect control over the 10-year
rate through control of the balance sheet and, in particular, the mix of government refinancing.
Finally, there is a close relationship between the federal funds rate (FEDFUNDS) and the 3-
month rate (TB3MS), as shown in figure 1, so that this spread is closely related to the more

traditional spread.



Figure 1. The Role of the Effective Federal Funds Rate in Defining the Spread
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C. Correlation Between Federal Funds Rate and 3-month Treasury Bill Rate
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(C) TB3MS versus FEDFUNDS, 1955-2018. Red indicates last 30 years, namely 1989-2018. Regression
line for last 30 years using Im function in R:
FEDFUNDS = 0.918 x TB3MS + 0.022, R* = 0.991, p <2.2x107"°.
For the full series,
FEDFUNDS = 0.850 x TB3MS + 0.350, R =0.979, p <2.2x107"°.

Sources: (B) Reprinted with permission of Federal Reserve Bank of St. Louis. FRED Graphs (2019)

(C) Data from FRED, retrieved 1/13/2019.

Moreover, the spread between the 10-year Treasury constant maturity rate (GS10) and the

effective federal funds rate (FEDFUNDS) defined in equation (1) is as effective as both the usual

definition of the spread (GS10 — 3-month Treasury bill: secondary market rate [TB3MS]) and the

spread between GS10 and the 1-year Treasury constant maturity rate (GS1) in predicting

recessions in the last 50 years, and in fact gave a sharper signal of the dot-com bubble recession

in the early 2000s (see figure 2 and table 1, below).



Figure 2. Time Series of Three Versions of the Spread
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Table 1. Sensitivity of Three Versions of the Spread

2000 2005 2010 2015

myf.red/g/mDMT

Spread 195567 1968—present
10-year Treasury constant Missed both recessions in the | 100 percent
maturity rate (GS10) — 1950s

effective federal funds rate

(FEDFUNDS)

GS10 - 3-month Treasury
bill: secondary market rate
(TB3MS)

Missed both recessions in the
1950s

Missed recession in 1990s,
slow to signal dot-com
recession in 2001

GS10 - 1-year Treasury
constant maturity rate (GS1)

100 percent

100 percent, but slow to
signal dot-com recession in
2001

We next study the temporal evolution of the spread GS10 — FEDFUNDS, as shown in equation

(1), using techniques from nonlinear dynamics.




3. NONLINEAR DYNAMICS OF THE SPREAD VIA TAKENS’ EMBEDDING AFTER
SEPARATION OF TIME SCALES

Since the spread GS10 — FEDFUNDS, as defined in equation (1) appears to be a useful predictor
of recessions (c.f., Estrella and Hardouvelis 1991; Estrella and Mishkin 1996, 1998; Estrella and
Trubin 2006; Liu and Moench 2014; Bauer and Mertens 2018), one may consider it to be an

observable in the sense of control theory.

This observation leads to asking whether one can reconstruct (at least a useful part of) the
dynamics of the US economy from the dynamics of the yield curve, using the Takens’
embedding theorem. In particular, we use Takens’ embedding and lag plots to model the
dynamics of the yield curve, the latter following the program corrDim in the package fractal in R
(Constantine and Percival 2017). The lag in Takens’ embedding is determined using the first
zero crossing of the autocorrelation, and is notably longer than the six-month and twelve-month
lags used in Liu and Moench (2014). Lag plots of smoothed data can uncover significant linear
and nonlinear patterns in data (c.f., Takens 1981; Sauer, Yorke, and Casdagli 1991; Hastings et
al. 1996; Sauer 2006), while the Takens’ embedding theorem shows that lagged data of one
signal suffices to produce an embedding of n-dimensional dynamics (Takens 1981; Grassberger

and Procaccia 1983; Sauer, Yorke, and Casdagli 1991; Sauer 2006).

3.1 Overview of Mathematical Concepts

Dynamical systems

The term “dynamical systems” refers to describing the temporal evolution of complex
(dynamical) systems, usually by employing differential equations or difference equations. The
state of a dynamical system at any given time can be represented by a vector in an appropriate
state space. Its temporal evolution is thus represented by a trajectory in a state space; thus the
state at any time is given by a tuple of real numbers (a vector) in an appropriate state space.

Casdagli (1991) reviews the use of dynamical systems in modeling input-output systems.



Attractor

Roughly speaking, an attractor for a dynamical system is a closed subset A of its state space
toward which trajectories in a neighborhood of the attractor tend to evolve, even if slightly
perturbed (Milnor 2006). For example, the state space of a physical system may consist of
positions and momenta of its components. The state space of an economic system may consist of
variables such as the inflation rate, unemployment rate, gross domestic product, interest rates,

etc. The business cycle can be considered as a trajectory in such an economic state space.

Thus, the first challenge in describing and understanding the dynamics of a complex system is to:

(a) find and identify a suitable finite-dimensional state space (if one exists);
(b) find and characterize an attractor within that state space (if one exists); and finally,

(c) describe the temporal evolution of the system on the attractor.

Even a good approximation can be useful. In many cases, the Takens’ embedding theorem (see
also Broomhead and King [1986] and Sauer, Yorke, and Casdagli [1991]) is a useful starting
point. The Takens’ embedding theorem states that one can reconstruct an n-dimensional attractor
for a dynamical system through plotting sequences of lagged observations (y(t),y(t — ), y(t —
27), ..., ¥(t — 2n1)) of one signal (coordinate, observable) from that attractor (Sauer [2006]; see
also supplemental material to Sugihara et al. [2012]) for an appropriate time lag . Even without

knowing n, these lag plots can convey useful information about the attractor.

Correlation Dimension

The complexity of an attractor can be characterized by its correlation dimension. The correlation
dimension is a natural generalization of familiar formulas for area and volume. The area of
simple two-dimensional (2D) geometric objects is represented by the product of two linear
dimensions, for example, A = length X width for a rectangle and A = 7r? for a (solid) circle.
The volume of simple three-dimensional (3D) geometric objects is represented by the product of
three linear dimensions, for example, V = length X width X height for a rectangular
parallelepiped and V = 4/3 mr3 for a (solid) sphere. Finally, since the circumference of (the

boundary of) a circle is C = 2nr, the boundary is one dimensional. The natural dimension of



attractors reconstructed by the Takens’ embedding theorem, which are simply sets of points, is

an exponent D for which the number of points within a distance r of a typical point scales is:

D ~ const X rP (2)

Note that the correlation dimension need not be an integer since it is an example of a fractal
dimension. The use of the correlation dimension to characterize an attractor is known as the

Grassberger-Procaccia (1983) algorithm (c.f., Grassberger [2007] for a review).

Application of these methods to time series data is limited by the length of the time series.
Eckmann and Ruelle (1992) show “that values of the correlation dimension estimated over a
decade from the Grassberger-Procaccia algorithm cannot exceed the value 2 log;oN if N is the

number of points in the time series.”

3.2 The Time Lag

In general, there is no optimal time lag t for attractor reconstruction via the Takens’ embedding
theorem. We have used one of the standard methods, namely, the first zero of the autocorrelation
function: the correlation of y(t) and y(t — 7). For example, if y(t) = cos(2nt/T), a simple
periodic function with period T, this method finds the time lag T = T /4. Note that y(t — 1) =
y(t —T/4) = sin(2nt/T). We found T = 26 months for the time series of monthly spread data
from 1955 to 2018 (GS10 — FEDFUNDS, 768 points), using the “timelag” program in the fractal
package in R (Constantine and Percival 2017).
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Figure 3. Autocorrelation of the Spread GS10 — FEDFUNDS
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3.3. Correlation Dimension of the Spread
Using the program corrDim in the package fractal in R (Constantine and Percival 2017) to

explore the dynamics, we present the output in table 2.

Table 2. Dynamics of the Spread: Output from the Program corrDim

Correlation dimension for GS10 — FEDFUNDS (586 points, time lag 26, L-inf metric)

Embedding dimension 1 2 3 4 5 6 7 8

Correlation dimension 1.101 | 1.939 | 2.632 | 2.641 | 3.585 | 3.487 | 3.504 | 3.521
(invariant estimate)

The correlation dimension approached 3.5 in embedding dimension 8, with a lag of 26 months
(using the first zero crossing of the autocorrelation function, shown in figure 3, below), yielding
a tangled lag plot in two dimensions (figure 5A, below). Given the limited amount of data, we
elected to detrend and somewhat smooth the data, with an aim to determining dynamics on a
reasonable time scale by removing shorter-term “noise” and any longer-term trend. We therefore
next smoothed the spread time series with lowess (Cleveland 1979; Cleveland and Devlin 1988)
as implemented in R (Warnes et al. 2016). Frequent sharp peaks and falls of economic time

series may be attributed to noise. The use of lowess performs a nonlinear separation of time
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scales so that Takens’ embedding focuses on an empirically appropriate timescale, yielding a

~2D attractor in 3D space.

3.4 Smoothed Data

A graph of the time series of the spread (figure 2) suggests a time scale of 7-10 years for a full
“cycle” and thus the 26-month lag above approximates a quarter of the cycle. For reference,
consider a sine wave of period T, represented by the formula: SiTl((ZT[ / T)t). The corresponding
cosine wave cos((Zn / T)t) is uncorrelated with the sine wave (the integral over any whole
number of periods | sin((ZH/T)t)cos((Zn/T)t)dt = 0) and lags the sine wave by a quarter
period, namely T /4: cos((Zn/T)t) = sin((Zn/T)t — n/Z) = sin((Zn/T) (t— T/4)). In
order to better focus on dynamics over this time scale, we introduce the use of lowess smoothing,

a nonlinear smoothing technique, to effect a separation of time scales.

In addition to lowess, there are several standard algorithms to highlight essential features that are
hidden by the noise, e.g., moving averages and Gaussian filters (c.f., Hyndman 2011) and
wavelets (c.f., Yi, Li, and Zhao 2012). We used lowess rather than moving averages for
detrending because: (1) the trend (dynamic on scales > 7—10 years) may be nonlinear and
subtracting a moving average would assume a linear trend; and (2) smoothing the “very fast”
dynamics on scales < 26 months might be accomplished by lowess or more local smoothing

techniques (e.g., Gaussian filters). We chose lowess because it is also used to remove the trend.

In sum, we study smoothed, detrended dynamics as follows:
a. Detrending, where the trend is computed using a lowess smoother (using default
parameters in the gplot package in R [Warnes et al. 2016]);
b. Smoothing (lowess, with lowess parameter {=.05);
c. Computing the correlation dimension, using the program corrDim in the package

fractal in R (Constantine and Percival 2017).

This process is summarized in figure 4 and the resulting dynamics are shown in figure 5SB. Note

the same 26-month lag, but now the correlation dimension stabilizes at ~2 (table 3).
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Figure 4. Detrending and Smoothing the Time Series of the Spread GS10 - FEDFUNDS
(768 points)

A. The Original Time Series of the Spread GS10 - FEDFUNDS
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B. The Long-term Trend (green line) Determined by lowess
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C. The Detrended Spread
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D. The Smoothed, Detrended Spread (a second application of lowess), Shown as a Green
Curve Superimposed on the Detrended Spread
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E. The Smoothed, Detrended Spectrum as a Predictor of Recessions
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Notes: (A) The time series of the spread GS10 - FEDFUNDS (768 points); (B) The trend (green line)
found using lowess; (C) The detrended spread (note change in vertical scale); (D) The smoothed, detrended
spread (green line), found using lowess with f = 0.05; (E) decrease of the smoothed detrended spread

below —1 percent forecasts recessions starting in 1968 (starting dates of NBER recessions are shown in red,
data from FRED using the midpoint method)

Source: https://fred.stlouisfed.org/series/USRECM, retrieved 1/9/2019.

Table 3. Dynamics of the Smoothed, Detrended Spread: Output from the Program
corrDim

Correlation dimension for GS10minusFEDFUNDS detrended (586 points, time lag 26, L-inf
metric)

Embedding dimension 1 2 3 4 5 6 7 8

Correlation dimension

. . . 0.976 | 1.607 | 1.565 | 1.986 | 2.057 | 2.051 | 2.256 | 2.503
(invariant estimate)

15



Figure SA. Lag Plots of the Spread GS10 — FEDFUNDS
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Figure 5B. The Smoothed, Detrended Spread
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Notes: Lag plots of the spread GS10 — FEDFUNDS (figure 5A) and the smoothed, detrended spread
(figure 5B), both projected into two dimensions. The correlation dimensions of the corresponding attractors
are ~3.5 (the spread) and ~2 (the smoothed, detrended spread). The general direction of motion along the
attractor is counterclockwise. Starting dates of recessions are shown by colored markers as in table 4.
Source: NBER, FRED data series USRECM, retrieved 1/9/2019.
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Table 4. Legend for Figures SA and 5B: Starting Dates of Recessions
Starting months of recessions (NBER, source: FRED data series USRECM)

= 1957-08-01 = 1981-07-01
e 1960-04-01 e 1990-07-01
~ 1969-12-01 ~ 2001-03-01
« 1973-11-01 « 2007-12-01
e 1980-01-01

Hence, it appears we can capture cyclic dynamics with the spread, perhaps indicating the

credit/liquidity cycle in the macroeconomic system (Kindelberger 2006; Minsky 1986).

4. WHY DIMENSION ~ 2 IS REASONABLE

We now consider whether and why the dimension is about 2, looking at both Liu and Moench’s
(2014) predictive models, and two dynamical models: the Goodwin (1967) model and the more
recent Bar-Yam et al. (2017) model.

Liu and Moench (2014) used the nonlinear probit model (c.f., Spermann 2008) to develop
predictors of future recessions and found that “usual” spread (10 year minus 3 months, that is
GS10 — TB3MS) and six-month lagged spread were optimal for predicting recessions within
time horizons of 624 months. The probit model aims to forecast the probability that a recession
will occur under given conditions. Moreover, Liu and Moench used a receiver operating
characteristic (ROC) curve to evaluate the predictive ability of a given model; the area under the
ROC curve describes the tradeoff between the sensitivity and specificity as the criterion
(probability level) in predicting a recession in a probit model. They observe that additional
predictors—Dbeyond spread (10 year minus 3 months) and 6-month lagged spread—added very
little to the ROC curve, suggesting that the relevant dynamics could be largely captured in

dimension ~ 2.
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The Goodwin model (a two-variable model) combines Lotka-Volterra predator-prey dynamics'
with an exponential growth term. Lotka-Volterra dynamics yield neutrally stable cycles, so
Goodwin-Lotka-Volterra dynamics are not structurally stable and may thus exhibit complex
responses to noise (Velupillai 1979; Pohjola 1981; Flaschel 1984; Boldrin and Woodford 1990;
Desai et al. 2006; Veneziani and Mohun 2006). A neutrally stable cycle is a one-dimensional
object (like a circle). A cycle, with amplitude varying randomly within bounds, will generate
trajectories in an annulus of dimension = 2. Lotka-Volterra dynamics density-dependent growth
plus noise is readily seen to generate noise-driven limit cycles of dimension ~ 2, as seen below.

Equations for the noise-driven cycle with jump processes can be given as:

Capital, prey: Axy = 0:x;(1 — x1) — Y1 X1X5 + 01 X1 X,Aw + jump

Labor, predator: Axy = Yox1Xy — 05X, + Oyx1 X, 4w 3)

Figure 6 shows the typical results of such a simulation, integrated with the Euler-Maruyama
algorithm, a standard algorithm for numerical integration of stochastic differential equations

(Higham 2001).

! Lotka (1924); see also the reviews by Hoppensteadt (2006) and Baigent (2010). Barbosa, Filho, and Taylor (2006)
combine similar dynamic combined with growth. In the terminology of Lotka-Volterra models, the workers’ share is
the “predator” and the capital share the “prey” (Veneziani and Mohun 2006; Huu,Nguyen, and Costa-Lima 2014).
See also Harvie (2000) and Stockhammer and Michell (2016) for Goodwin dynamics.
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Figure 6. Lotka-Volterra Dynamics with Noise

Euler-Maruyama X1 vs X2

X1 X2

time X1

Notes: Left: Time series. Prey denoted X1 (solid black line), predators X2 (dashed red line). Right: Dynamics in the
X1-X2 state space. The correlation dimension stabilizes at ~2.

Here we can see both of the cyclic dynamics indicative of something like the credit/liquidity
cycles, as well as jump processes, capturing excess volatility not accounted for in the baseline
model. Such dynamics indicate an approximately 2D model may serve well to account for

baseline macro-attractors.

Bar-Yam et al. (2017) model an investment and consumption cycle, which is roughly analogous
to Goodwin dynamics, but more complex. As they state: “Thus the models describe economic
and monetary dynamics distinguishing two primary monetary loops (1) consumption and wages,
and (2) investment and returns (rents). Such a framework is manifest, for example, in the
Goodwin (1967) model and also the Kalecki (1954) model, used to describe macroeconomic
oscillations called ‘business cycles.”” We therefore decided to study the description of cycles of

investment and consumption that led to the Bar-Yam et al. model.

Figure 7 shows investment and consumption time series data from FRED (top) and detrended
investment and consumption data (bottom); that is, it shows ratios of investment and
consumption to exponential trends in the respective data. Consumption grew at an annual rate of
0.253 percent after inflation and seasonal adjustment (R> = 0.913); investment grew at an
average annual rate of 0.648 percent (R” = 0.597, reflecting larger fluctuations about the

exponential trend line). As shown by Bar-Yam et al. (2017), investment shows quasicyclic

20



behavior, peaking just before recessions. Takens’ embedding following lowess smoothing and

separation of time scales also yields dimension ~2 (figure 8).
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Figure 7A. Investment and Consumption Time Series: Investment and Consumption, Raw
Data
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Figure 7B. Investment and Consumption Data Detrended by First Removing Exponential
Trends in the Data (through 2018Q2), then Normalized by Ratio to Trend Line
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Sources: U.S. Bureau of Economic Analysis, Real Gross Private Domestic Investment [GPDIC1], and U.S. Bureau
of Economic Analysis, Real Personal Consumption Expenditures [PCECC96], retrieved from FRED, Federal
Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/GPDIC1 and
https://fred.stlouisfed.org/series/PCECC96, respectively, January 14, 2019.
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Figure 8. Lag Plots of Rescaled Investment, lag = 6 (arbitrary units): No Further
Processing (left) and after lowess Detrending and Smoothing (right)

rescaled investment rescaled investment

1
0.05 0.10 0.15
) |

v(t)

-0.05

0.9

-0.15

08 0.9 1.0 1.1 1.2 13 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

v(t-6) v(t-6)

Notes: Red mark at right indicates start of dynamics (earliest points). Note complex dynamics before lowess
processing, and smoother dynamics (reflecting dimension ~ 2) after processing.

In summary, the dimension analysis of the spread, following lowess separation of time scales,
yields results (dimension ~ 2) consistent with those of typical simplified economic models. As
considered, both yield measures of the monetary base relative to maturity class as well as
macroeconomic aggregate flows of investment and consumption, and both seem to pick up such

cyclical dynamics, suggestive of competitive business cycles in a financial economy.

Finally, we consider Sugihara causality (Sugihara et al. 2012) from the yield curve to GDP
growth. Our abstract with a student-lead author (Wang, Young-Taft, and Hastings 2018) found
evidence for Sugihara causality from the yield curve (GS10-FEDFUNDS) to GDP growth (note
increasing correlation with increasing “library size” [number of points used in determining
correlation] in figure 9, left), as well as evidence for a cycle in causality with peaks at time
offsets of £7—10 quarters in addition to the peak at lag 0 (see figure 9, right). Note there is an
important policy consequence: the effect of changing the spread upon growth may not peak for

7-10 quarters.
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Figure 9. Causality from the Yield Curve to GDP Growth (left-hand side) and the Effect of
Time Offset (tp) on Correlation
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Notes: In the left-hand graph, note increasing correlation with increasing “library size” (number of points used in
determining correlation). In the right-hand graph, note peaks at + 7-10.

We conclude with some discussion of our results, including limitations and potential for future

work.

5. DISCUSSION

In this paper we studied the dynamics of the yield curve followed by suitable detrending and
separation of time scales via lowess smoothing resulting in quasicyclic dynamics. One standard
approach to Takens’ (1981) embedding found the first zero of autocorrelation at a lag of 26
months, and a “macroeconomic attractor” of dimension ~ 2. The 26-month lag was shown to be
consistent with the lag associated with monetary effects on the macroeconomy using Sugihara
causality. We plan to extend the use of dynamic time series analysis in monetary and
macroeconomic analysis, pointing the way toward future applications across variables and
economic settings, including: (1) sectoral analysis; (2) analysis of yield curves with multiple

maturities; (3) market microstructure analysis of Treasury issuance and limit order and order
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books; (4) inclusion of various yields of different financial instruments in a multivariate exercise;
and (5) comparison between and across countries, undertaken perhaps under the null hypothesis

of ~ 2 dimensional dynamics.

Limitations

Although we find this approach and results to be interesting, substantive, and demonstrative,
potential attractor dynamics and topology via variable selection and modeling regimes still
remain to be explored. One may also need to consider velocity (derivatives) of variables in
variables themselves, as well as multidimensional embedding (Barnard, Aldrich, and Gerber
2001), data-driven equation-free approaches (Ye et al. 2015), and alternative filtering
techniques—such as Takens-Kalman filtering (Hamilton, Berry, and Sauer 2016, 2017)—in

order to generate fundamental, core predictive dynamical models.
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